scholarly journals Predicting Mango Sudden Decline Due to Ceratocystis fimbriata Under a Changing Climate

2021 ◽  
Vol 39 (3) ◽  
pp. 215-223
Author(s):  
Amna M. Al-Ruheili ◽  
◽  
Alaba Boluwade ◽  
Ali M. Al-Subhi ◽  
◽  
...  

Mango fruit trees are an important fruit crop due to their high value. Mango sudden decline (MSD) is a major disease that threatens mango trees in Oman and worldwide. The objective of this study was to identify those areas in northern Oman in which Ceratocystis fimbriata (a plant fungal pathogen causing MSD) may establish itself under various climate change scenarios. The MaxEnt model used in this study was based on data for the period 1970-2000 and then projected to future climate periods. This study modeled the future distribution of C. fimbriata for 2021–2040, 2041–2060, 2061–2080, and 2081–2100 climatic scenarios. Fifteen affected locations and seven bioclimatic variables were investigated in this study. The model showed values between 0.896 and 0.913 (habitat suitability) which represented a good model outcome. The jackknife test showed that the mean diurnal range in temperature, precipitation of the driest month, and elevation contributed to C. fimbriata distribution. From 2021 through 2040, a total area of 1,889 km2 was found to be highly suitable for C. fimbriata in Northern Oman. Compared with the 2021–2040 period, the poorly suitable area would increase in both 2041–2060 and 2081–2100 periods. The moderately suitable regions for C. fimbriata would decrease under all scenarios investigated. However, the total area of the suitable areas, with all scenarios, would increase, except during the 2041-2060 period. This research offers a tool to better manage and prevent the possible Ceratocystis blight (C. fimbriata) and bark beetle (Hypocryphalus mangiferae) invasions under future projected climatic scenarios. Keywords: Mango sudden decline (MSD), “Ceratocystis fimbriata”, bioclimatic variables, climate change, Sultanate of Oman, Maxent.

Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 874
Author(s):  
Jinyue Song ◽  
Hua Zhang ◽  
Ming Li ◽  
Wuhong Han ◽  
Yuxin Yin ◽  
...  

The red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae), is an invasive pest, and it has spread rapidly all over the world. Predicting the suitable area of S. invicta growth in China will provide a reference that will allow for its invasion to be curbed. In this study, based on the 354 geographical distribution records of S. invicta, combined with 24 environmental factors, the suitable areas of S. invicta growth in China under current (2000s) and future (2030s and 2050s) climate scenarios (SSPs1-2.5s, SSPs2-3.5s and SSPs5-8.5s) were predicted by using the optimized MaxEnt model and geo-detector model. An iterative algorithm and knife-cut test were used to evaluate the important environmental factors that restrict the suitable area under the current climatic conditions. This study also used the response curve to determine the appropriate value of environmental factors to further predict the change and the center of gravity transfer of the suitable area under climate change. The optimized MaxEnt model has high prediction accuracy, and the working curve area (AUC) of the subjects is 0.974. Under climatic conditions, the suitable area is 81.37 × 104 km2 in size and is mainly located in the south and southeast of China. The main environmental factors affecting the suitable area are temperature (Bio1, Bio6, and Bio9), precipitation (Bio12 and Bio14) and NDVI. In future climate change scenarios, the total suitable area will spread to higher latitudes. This distribution will provide an important theoretical basis for relevant departments to rapidly prevent and control the invasion of S. invicta.


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1159
Author(s):  
Jinwen Pan ◽  
Xin Fan ◽  
Siqiong Luo ◽  
Yaqin Zhang ◽  
Shan Yao ◽  
...  

Climate change considerably affects vegetation growth and may lead to changes in vegetation distribution. Leopard-skin camphor is an endangered species, and the main raw material for hawk tea, and has various pharmacodynamic functions. Studying the potential distribution of two leopard-skin camphor varieties under climate change should assist in the effective protection of these species. We collected the distribution point data for 130 and 89 Litsea coreana Levl. var. sinensis and L. coreana Levl. var. lanuginosa, respectively, and data for 22 environmental variables. We also predicted the potential distribution of the two varieties in China using the maximum entropy (MaxEnt) model and analyzed the key environmental factors affecting their distribution. Results showed that the two varieties are mainly located in the subtropical area south of the Qinling Mountains–Huai River line in the current and future climate scenarios, and the potentially suitable area for L. coreana Levl. var. lanuginosa is larger than that of L. coreana Levl. var. sinensis. Compared with current climatic conditions, the potentially suitable areas of the two leopard-skin camphor varieties will move to high-latitude and -altitude areas and the total suitable area will increase slightly, while moderately and highly suitable areas will be significantly reduced under future climatic scenarios. For example, under a 2070-RCP8.5 (representative of a high greenhouse gas emission scenario in the 2070s) climatic scenario, the highly suitable areas of L. coreana Levl. var. sinensis and L. coreana Levl. var. lanuginosa are 6900 and 300 km2, and account for only 10.27% and 0.21% of the current area, respectively. Temperature is the key environmental factor affecting the potential distribution of the two varieties, especially the mean daily diurnal range (Bio2) and the min temperature of the coldest month (Bio6). The results can provide a reference for relevant departments in taking protective measures to prevent the decrease or extinction of the species under climate change.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 460
Author(s):  
Amna M. Al Ruheili ◽  
Alaba Boluwade ◽  
Ali M. Al Subhi

Witches’ broom disease has led to major losses in lime and alfalfa production in Oman. This paper identifies bioclimatic variables that contribute to the prediction of distribution of witches’ broom disease in current and future climatic scenarios. It also explores the expansion, reduction, or shift in the climatic niche of the distribution of the disease across the different geographical areas of the entire country (309,501 km²). The maximum entropy model (MaxEnt) and geographical information system were used to investigate the potential suitability of habitats for the phytoplasma disease. This study used current (1970–2000) and future projected climatic scenarios (2021–2040, 2041–2060, 2061–2080, and 2081–2100) to model the distribution of phytoplasma for lime trees and alfalfa in Oman. Bioclimatic variables were downloaded from WorldClim with ± 60 occurrence points for lime trees and alfalfa. The area under the curve (AUC) was used to evaluate the model’s performance. Quantitatively, the results showed that the mean of the AUC values for lime (16SrII-B) and alfalfa (16SrII-D) future distribution for the periods of 2021–2040, 2041–2060, 2061–2080, and 2081–2100 were rated as “excellent”, with the values for the specified time periods being 0.859, 0.900, 0.931, and 0.913 for 16SrII-B; and 0.826, 0.837, 08.58, and 0.894 for 16SrII-D respectively. In addition, this study identified the hotspots and proportions of the areas that are vulnerable under the projected climate-change scenarios. The area of current (2021–2040) highly suitable distribution within the entire country for 16SrII-D was 19474.2 km2 (7.1%), while for 16SrII-B, an area of 8835 km2 (3.2%) was also highly suitable for the disease distribution. The proportions of these suitable areas are very significant from the available arable land standpoint. Therefore, the results from this study will be of immense benefit and will also bring significant contributions in mapping the areas of witches’ broom diseases in Oman. The results will equally aid the development of new strategies and the formulation of agricultural policies and practices in controlling the spread of the disease across Oman.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 752
Author(s):  
Yichen Zhou ◽  
Zengxin Zhang ◽  
Bin Zhu ◽  
Xuefei Cheng ◽  
Liu Yang ◽  
...  

Cunninghamia lanceolata (Lamb.) Hook. (Chinese fir) is one of the main timber species in Southern China, which has a wide planting range that accounts for 25% of the overall afforested area. Moreover, it plays a critical role in soil and water conservation; however, its suitability is subject to climate change. For this study, the appropriate distribution area of C. lanceolata was analyzed using the MaxEnt model based on CMIP6 data, spanning 2041–2060. The results revealed that (1) the minimum temperature of the coldest month (bio6), and the mean diurnal range (bio2) were the most important environmental variables that affected the distribution of C. lanceolata; (2) the currently suitable areas of C. lanceolata were primarily distributed along the southern coastal areas of China, of which 55% were moderately so, while only 18% were highly suitable; (3) the projected suitable area of C. lanceolata would likely expand based on the BCC-CSM2-MR, CanESM5, and MRI-ESM2-0 under different SSPs spanning 2041–2060. The increased area estimated for the future ranged from 0.18 to 0.29 million km2, where the total suitable area of C. lanceolata attained a maximum value of 2.50 million km2 under the SSP3-7.0 scenario, with a lowest value of 2.39 million km2 under the SSP5-8.5 scenario; (4) in combination with land use and farmland protection policies of China, it is estimated that more than 60% of suitable land area could be utilized for C. lanceolata planting from 2041–2060 under different SSP scenarios. Although climate change is having an increasing influence on species distribution, the deleterious impacts of anthropogenic activities cannot be ignored. In the future, further attention should be paid to the investigation of species distribution under the combined impacts of climate change and human activities.


Climate ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Suzanna Meeussen ◽  
Anouschka Hof

Climate change is expected to have an impact on the geographical distribution ranges of species. Endemic species and those with a restricted geographic range may be especially vulnerable. The Persian jird (Meriones persicus) is an endemic rodent inhabiting the mountainous areas of the Irano-Turanian region, where future desertification may form a threat to the species. In this study, the species distribution modelling algorithm MaxEnt was used to assess the impact of future climate change on the geographic distribution range of the Persian jird. Predictions were made under two Representative Concentration Pathways and five different climate models for the years 2050 and 2070. It was found that both bioclimatic variables and land use variables were important in determining potential suitability of the region for the species to occur. In most cases, the future predictions showed an expansion of the geographic range of the Persian jird which indicates that the species is not under immediate threat. There are however uncertainties with regards to its current range. Predictions may therefore be an over or underestimation of the total suitable area. Further research is thus needed to confirm the current geographic range of the Persian jird to be able to improve assessments of the impact of future climate change.


2016 ◽  
Vol 64 (3) ◽  
Author(s):  
David A. Moo-Llanes

The leishmaniasis is a complex disease system, caused by the protozoan parasite Leishmania and transmitted to humans by the vector Lutzomyia spp. Since it is listed as a neglected disease according to the World Health Organization, the aim of this study was to determine the current and future niche of cutaneous and visceral leishmaniasis in the Neotropical region. We built the ecological niche model (ENM) of cutaneous (N= 2 910 occurrences) and visceral (N= 851 occurrences) leishmaniasis using MaxEnt algorithm. Nine bioclimatic variables (BIO1, BIO4, BIO5, BIO6, BIO7, BIO12, BIO13, BIO14, BIO15 (downloaded from the Worldclim) and disease occurrences data were used for the construction of ENM for three periods (current, 2050 and 2070) and four climate change scenarios (RCP 2.6, 4.5, 6.0 y 8.5). We analyzed the number of pixels occupied, identity niche, modified niche (stable, loss, and gain) and seasonality. Our analyses indicated the expansion for cutaneous leishmaniasis (CL), a comparison for visceral leishmaniasis (VL). We rejected the null hypothesis of niche identity between CL and VL with Hellinger’s index = 0.91 (0.92-0.98) and Schoener’s Index = 0.67 (0.85-1.00) but with an overlap niche of 56.3 %. The differences between the two leishmaniasis types were detected in relation to RCP scenarios and niche shifts (area gained / loss). Seasonality was more important for CL. We provided a current picture of CL and VL distributions and the predicted distributional changes associated to different climate change scenarios for the Neotropical region. We can anticipate that increasing range is likely although it will depend locally on the future trends in weather seasonality.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peter Capainolo ◽  
Utku Perktaş ◽  
Mark D. E. Fellowes

Abstract Background Climate change due to anthropogenic global warming is the most important factor that will affect future range distribution of species and will shape future biogeographic patterns. While much effort has been expended in understanding how climate change will affect rare and declining species we have less of an understanding of the likely consequences for some abundant species. The Common Grackle (Quiscalus quiscula; Linnaeus 1758), though declining in portions of its range, is a widespread blackbird (Icteridae) species in North America east of the Rocky Mountains. This study examined how climate change might affect the future range distribution of Common Grackles. Methods We used the R package Wallace and six general climate models (ACCESS1-0, BCC-CSM1-1, CESM1-CAM5-1-FV2, CNRM-CM5, MIROC-ESM, and MPI-ESM-LR) available for the future (2070) to identify climatically suitable areas, with an ecological niche modelling approach that includes the use of environmental conditions. Results Future projections suggested a significant expansion from the current range into northern parts of North America and Alaska, even under more optimistic climate change scenarios. Additionally, there is evidence of possible future colonization of islands in the Caribbean as well as coastal regions in eastern Central America. The most important bioclimatic variables for model predictions were Annual Mean Temperature, Temperature Seasonality, Mean Temperature of Wettest Quarter and Annual Precipitation. Conclusions The results suggest that the Common Grackle could continue to expand its range in North America over the next 50 years. This research is important in helping us understand how climate change will affect future range patterns of widespread, common bird species.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12311
Author(s):  
Jingyun Guan ◽  
Moyan Li ◽  
Xifeng Ju ◽  
Jun Lin ◽  
Jianguo Wu ◽  
...  

Desert locusts are notorious for their widespread distribution and strong destructive power. Their influence extends from the vast arid and semiarid regions of western Africa to northwestern India. Large-scale locust outbreaks can have devastating consequences for food security, and their social impact may be long-lasting. Climate change has increased the uncertainty of desert locust outbreaks, and predicting suitable habitats for this species under climate change scenarios will help humans deal with the potential threat of locust outbreaks. By comprehensively considering climate, soil, and terrain variables, the maximum entropy (MaxEnt) model was used to predict the potential habitats of solitary desert locusts in the 2050s and 2070s under the four shared socioeconomic pathways (SSP126, SSP245, SSP370, and SSP585) in the CMIP6 model. The modeling results show that the average area under the curve (AUC) and true skill statistic (TSS) reached 0.908 ± 0.002 and 0.701, respectively, indicating that the MaxEnt model performed extremely well and provided outstanding prediction results. The prediction results indicate that climate change will have an impact on the distribution of the potential habitat of solitary desert locusts. With the increase in radiative forcing overtime, the suitable areas for desert locusts will continue to contract, especially in the 2070s under the SSP585 scenario, and the moderately and highly suitable areas will decrease by 0.88 × 106 km2 and 1.55 × 106 km2, respectively. Although the potentially suitable area for desert locusts is contracting, the future threat posed by the desert locust to agricultural production and food security cannot be underestimated, given the combination of maintained breeding areas, frequent extreme weather events, pressure from population growth, and volatile sociopolitical environments. In conclusion, methods such as monitoring and early warning, financial support, regional cooperation, and scientific prevention and control of desert locust plagues should be further implemented.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 689
Author(s):  
Gisel Garza ◽  
Armida Rivera ◽  
Crystian Sadiel Venegas Barrera ◽  
José Guadalupe Martinez-Ávalos ◽  
Jon Dale ◽  
...  

Walker’s Manihot, Manihot walkerae, is an endangered plant that is endemic to the Tamaulipan thornscrub ecoregion of extreme southern Texas and northeastern Mexico. M. walkerae populations are highly fragmented and are found on both protected public lands and private property. Habitat loss and competition by invasive species are the most detrimental threats for M. walkerae; however, the effect of climate change on M. walkerae’s geographic distribution remains unexplored and could result in further range restrictions. Our objectives are to evaluate the potential effects of climate change on the distribution of M. walkerae and assess the usefulness of natural protected areas in future conservation. We predict current and future geographic distribution for M. walkerae (years 2050 and 2070) using three different general circulation models (CM3, CMIP5, and HADGEM) and two climate change scenarios (RCP 4.5 and 8.5). A total of nineteen spatially rarefied occurrences for M. walkerae and ten non-highly correlated bioclimatic variables were inputted to the maximum entropy algorithm (MaxEnt) to produce twenty replicates per scenario. The area under the curve (AUC) value for the consensus model was higher than 0.90 and the partial ROC value was higher than 1.80, indicating a high predictive ability. The potential reduction in geographic distribution for M. walkerae by the effect of climate change was variable throughout the models, but collectively they predict a restriction in distribution. The most severe reductions were 9% for the year 2050 with the CM3 model at an 8.5 RCP, and 14% for the year 2070 with the CMIP5 model at the 4.5 RCP. The future geographic distribution of M. walkerae was overlapped with protected lands in the U.S. and Mexico in order to identify areas that could be suitable for future conservation efforts. In the U.S. there are several protected areas that are potentially suitable for M. walkerae, whereas in Mexico no protected areas exist within M. walkerae suitable habitat.


Sign in / Sign up

Export Citation Format

Share Document