Local texture analysis of structure non-uniformity in low carbon high-strength steel after direct quenching

Author(s):  
A. A. Zisman ◽  
N. Yu. Zolotorevsky ◽  
S. N. Petrov ◽  
E. I. Khlusova ◽  
E. A. Yashina

The direct quenching of high-strength steels after hot rolling, which enables discard of the reheating operation, is economically efficient but necessitates a careful analysis of corresponding structural features. In particular, this treatment sometimes results in extended domains of coarse bainite decreasing the fracture toughness of steel. To reveal dependence of such effects on ausforming conditions, local textures of the parent γ-phase have been reconstructed from EBSD orientation data with allowance for the inter-phase orientation relationship. According to the obtained results, the unfavorable structural non-uniformity appears in the direct quenching due to excessive work hardening of austenite at the finish rolling stage; however, the structure and properties of steel can be improved by the reheating and subsequent quenching.

2005 ◽  
Vol 500-501 ◽  
pp. 551-558 ◽  
Author(s):  
A. Ghosh ◽  
Brajendra Mishra ◽  
Subrata Chatterjee

In the present study HSLA steels of varying carbon concentrations, alloyed with Mn, Ni, Cr, Mo, Cu and micro-alloyed with Nb and Ti were subjected to different finish rolling temperatures from 850oC to 750oC in steps of 50oC. The microstructure of the steel predominantly shows martensite. Fine twins, strain induced precipitates in the martensite lath along with e-Cu precipitates are observed in the microstructure. With an increase in carbon content the strength value increases from 1200MPa UTS to 1700MPa UTS with a negligible reduction in elongation. Impact toughness values of 20-26 joules at room temperature and −40oC were obtained in sub-size samples.


2016 ◽  
Vol 879 ◽  
pp. 1819-1827 ◽  
Author(s):  
Mahesh C. Somani ◽  
Jaakko I. Hannula ◽  
Antti J. Kaijalainen ◽  
Devesh K. Misra ◽  
David A. Porter

Recent interests in developing novel super-high strength steels have led to extensive research efforts in direct quenching with or without tempering (DQ, DQT) or combined with partitioning (DQP). Both strip and plate products have been targeted for different applications. For boron-microalloyed DQ/DQT steels, the ASTM A255 approach for predicting the hardenability was considered inapplicable. Fresh attempts were made to develop new hardenability models through non-linear regression analysis by dynamically varying both the boron factor and multiplying factors of most elements in the alloy factor. Based on the recent concept of quenching and partitioning (Q&P), a novel processing route comprising thermomechanical rolling followed by direct quenching and partitioning (TMR-DQP) has been established for the development of ultra-high strength structural steels with yield strengths ≈1100 MPa combined with good uniform and total elongations and impact toughness. Examples of recent advances made in DQ processing and associated challenges, such as those related to the bendability of low carbon martensitic-bainitic steels and influence of boron on the toughness of Nb-bearing martensitic steels are presented.


2021 ◽  
Vol 11 (12) ◽  
pp. 5728
Author(s):  
HyeonJeong You ◽  
Minjung Kang ◽  
Sung Yi ◽  
Soongkeun Hyun ◽  
Cheolhee Kim

High-strength steels are being increasingly employed in the automotive industry, requiring efficient welding processes. This study analyzed the materials and mechanical properties of high-strength automotive steels with strengths ranging from 590 MPa to 1500 MPa, subjected to friction stir welding (FSW), which is a solid-phase welding process. The high-strength steels were hardened by a high fraction of martensite, and the welds were composed of a recrystallized zone (RZ), a partially recrystallized zone (PRZ), a tempered zone (TZ), and an unaffected base metal (BM). The RZ exhibited a higher hardness than the BM and was fully martensitic when the BM strength was 980 MPa or higher. When the BM strength was 780 MPa or higher, the PRZ and TZ softened owing to tempered martensitic formation and were the fracture locations in the tensile test, whereas BM fracture occurred in the tensile test of the 590 MPa steel weld. The joint strength, determined by the hardness and width of the softened zone, increased and then saturated with an increase in the BM strength. From the results, we can conclude that the thermal history and size of the PRZ and TZ should be controlled to enhance the joint strength of automotive steels.


2019 ◽  
Vol 49 (1) ◽  
pp. 327-359 ◽  
Author(s):  
Alan Taub ◽  
Emmanuel De Moor ◽  
Alan Luo ◽  
David K. Matlock ◽  
John G. Speer ◽  
...  

Reducing the weight of automobiles is a major contributor to increased fuel economy. The baseline materials for vehicle construction, low-carbon steel and cast iron, are being replaced by materials with higher specific strength and stiffness: advanced high-strength steels, aluminum, magnesium, and polymer composites. The key challenge is to reduce the cost of manufacturing structures with these new materials. Maximizing the weight reduction requires optimized designs utilizing multimaterials in various forms. This use of mixed materials presents additional challenges in joining and preventing galvanic corrosion.


2000 ◽  
Vol 16 (02) ◽  
pp. 97-109
Author(s):  
Koichi Masubuchi ◽  
Jerry E. Jones

A 36-month program supported by the Defense Advanced Research Projects Agency (DARPA) was conducted to demonstrate the feasibility to predictably laser form a variety of ferrous and non-ferrous metals of different thickness. Laser forming provides a method of producing complex shapes in sheet, plate, and tubing without the use of tooling, molds, or dies. By heating a localized area with a laser beam, it is possible to create stress states that result in predictable deformation. This research program has developed, refined and demonstrated constitutive and empirical, and neural network models to predict deformation as a function of critical parametric variables and established an understanding of the effect of laser forming on some metallurgical properties of materials. The program was organized into two, time-phased tasks. The first task involved forming flat plates to one-dimensional (I -D) shapes, such as, hinge bends in various materials including low-carbon steel, high-strength steels, nickel-based super alloys, and aluminum alloys. The second task expanded the work conducted in the first task to investigate three-dimensional (3-D) configurations. The models were updated, 3-D specimens fabricated and evaluated, and cost benefit analyses were performed.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 792 ◽  
Author(s):  
Panos Efthymiadis ◽  
Khalid Nor

Laser welding of dissimilar high-strength steels was performed in this study for two different geometries, flat and circular samples with material thicknesses of 5 and 8 mm. The material combinations were a low carbon to a medium or high carbon steel. Three different welding systems were employed: a Nd:YAG, a CO2 and a fiber laser. The process stability was evaluated for all the experiments. The resulting full penetration welds were inspected for their surface quality at the top and bottom of the specimens. Cross sections were taken to investigate the resulting microstructures and the metallurgical defects of the welds, such as cracks and pores. Significant hardening occurred in the weld region and the highest hardness values occurred in the Heat Affected Zone (HAZ) of the high carbon steel. The occurrence of weld defects depends strongly on the component geometry. The resulting microstructures within the weld were also predicted using neural network-simulated Continuous Cooling Transformation (CCT) diagrams and predicted the occurrence of a mixture of microstructures, such as bainite, martensite and pearlite, depending on the material chemistry. The thermal fields were measured with thermocouples and revealed the strong influence of component geometry on the cooling rate which in term defines the microstructures forming in the weld and the occurring hardness.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2302 ◽  
Author(s):  
Yilin Wang ◽  
Huicheng Geng ◽  
Bin Zhu ◽  
Zijian Wang ◽  
Yisheng Zhang

The application of the quenching and partitioning (Q-P) process on advanced high-strength steels improves part ductility significantly with little decrease in strength. Moreover, the mechanical properties of high-strength steels can be further enhanced by the stepping-quenching-partitioning (S-Q-P) process. In this study, a two-stage quenching and partitioning (two-stage Q-P) process originating from the S-Q-P process of an advanced high-strength steel 30CrMnSi2Nb was analyzed by the simulation method, which consisted of two quenching processes and two partitioning processes. The carbon redistribution, interface migration, and phase transition during the two-stage Q-P process were investigated with different temperatures and partitioning times. The final microstructure of the material formed after the two-stage Q-P process was studied, as well as the volume fraction of the retained austenite. The simulation results indicate that a special microstructure can be obtained by appropriate parameters of the two-stage Q-P process. A mixed microstructure, characterized by alternating distribution of low carbon martensite laths, small-sized low-carbon martensite plates, retained austenite and high-carbon martensite plates, can be obtained. In addition, a peak value of the volume fraction of the stable retained austenite after the final quenching is obtained with proper partitioning time.


2012 ◽  
Vol 1485 ◽  
pp. 83-88 ◽  
Author(s):  
G. Altamirano ◽  
I. Mejía ◽  
A. Hernández-Expósito ◽  
J. M. Cabrera

ABSTRACTThe aim of the present research work is to investigate the influence of B addition on the phase transformation kinetics under continuous cooling conditions. In order to perform this study, the behavior of two low carbon advanced ultra-high strength steels (A-UHSS) is analyzed during dilatometry tests over the cooling rate range of 0.1-200°C/s. The start and finish points of the austenite transformation are identified from the dilatation curves and then the continuous cooling transformation (CCT) diagrams are constructed. These diagrams are verified by microstructural characterization and Vickers micro-hardness. In general, results revealed that for slower cooling rates (0.1-0.5 °C/s) the present phases are mainly ferritic-pearlitic (F+P) structures. By contrast, a mixture of bainitic-martensitic structures predominates at higher cooling rates (50-200°C/s). On the other hand, CCT diagrams show that B addition delays the decomposition kinetics of austenite to ferrite, thereby promoting the formation of bainitic-martensitic structures. In the case of B microalloyed steel, the CCT curve is displaced to the right, increasing the hardenability. These results are associated with the ability of B atoms to segregate towards austenitic grain boundaries, which reduce the preferential sites for nucleation and development of F+P structures.


Author(s):  
Yu-Jun Xia ◽  
Yan Shen ◽  
Lang Zhou ◽  
Yong-Bing Li

Abstract Weld expulsion is one of the most common welding defects during resistance spot welding (RSW) process especially for high strength steels (HSS). In order to control and eventually eliminate weld expulsion in production, accurate assessment of the expulsion severity should be the first step and is urgently required. Among the existing methods, real-time monitoring of RSW-related process signals has become a promising approach to actualize the online evaluation of weld expulsion. However, the inherent correlation between the process signals and the expulsion intensity is still unclear. In this work, a commonly used process signal, namely the electrode displacement and its instantaneous behavior when expulsion occurs are systematically studied. Based upon experiments with various electrodes and workpieces, a nonlinear relation between the weight of expelled metal and the sudden displacement drop accompanied by the occurrence of weld expulsion is observed, which is mainly influenced by electrode tip geometry but not by material strength or sheet thickness. The intrinsic relationship between this specific signal feature and the magnitude of expulsion is further explored through geometrical analysis, and a modified analytical model for online expulsion evaluation is finally proposed. It is shown that the improved model could be applied to domed electrodes with different tip geometries and varying workpieces ranging from low carbon steel to HSS. The error of expulsion estimation could be limited within ±20.4 mg (±2σ) at a 95% confidence level. This study may contribute to the online control of weld expulsion to the minimum level.


Sign in / Sign up

Export Citation Format

Share Document