scholarly journals The influence of gelatine on the corrosion behaviour of cold worked copper wire in alkaline media

2006 ◽  
Vol 42 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Svetlana Ivanov ◽  
Mirjana Rajcic-Vujasinovic ◽  
Zoran Stevic

Copper wire obtained by dip-forming process was cold worked to the deformation degrees of 83, 87, 91, 95 and 99 %. Electrochemical potentiodynamic method was used to investigate corrosion behavior of these wires in aqueous solutions of Na2CO3 (1 mol/dm3). Open circuit potentials as well as peak potentials are given as a function of deformation degree in Na2CO3 without and with addition of gelatine in concentration between 0.1 and 0.5 g/l. It was found that the addition of gelatine does not change the mechanism of the process, but influences on current density. Small concentrations of gelatine (0.1 g/l or less) have positive influence on the corrosion protection of copper in alkaline solution, but the addition of gelatine in concentration 0.5 g/l causes the increasing of its corrosion rate.

2000 ◽  
Vol 65 (1) ◽  
pp. 73-81
Author(s):  
P. Zivkovic ◽  
J. Pjescic ◽  
S. Mentus

The alloy composed of Al(95.53%), Zn(2.85%), Sn(0.515%), Ga(0.1%) and Sr(0.009%), with the weight percents in the parentheses, was prepared by melting, using Al(99.84%), a product of the Aluminium Plant-Podgorica, as the base material. The corrosion behaviour of this alloy was tested in relation to the behaviour of the base metals, by both open curcuit potential and polarization resistance methods, in aqueous solutions of both NaCl and Na2SO4, the concentration of which varied within the range 0.00051 - 0.51 mol dm -3. Over the whole salt concentration ranges, the corrosion parameters indicate that the corrosion rate of the alloy is significantly higher than the rate of the base material. For instance, for the concentration range 0.00051 - 0.51 mol dm -3 , the stationary open circuit potentials, related to SCE, in NaCl solutions were - 1.200 to - 1.460 V for the alloy and - 0.693 to - 0.920 V for Al, while in Na2SO4 solutions, the stationary open circuit potentials were - 1.190 to - 1.465V for the alloy and - 0.780 to - 0.860V for Al. At the same time, the corrosion current density in NaCl solutions varied within 11-89 mA cm -2 for the alloy and 0.35 - 0.80 for Al, while in Na2SO4 solutions it amounted to 5.7.52 mA cm -2 for the alloy and 0.28 - 0.88 mA cm -2 for Al.


2018 ◽  
Vol 3 (2) ◽  
pp. 150
Author(s):  
Juliawati Alias ◽  
Nurul Shuhada Shuhada Mohamed ◽  
Mahadzir Ishak ◽  
Xiorong Zhou ◽  
George E Thompson

The influence of the hot forming process of AZ31B wrought and twin roll cast (TRC) magnesium alloy sheets on the microstructure and corrosion behaviour have been evaluated. The corrosion behaviour was investigated by hydrogen evolution experiments in chloride-containing solution. Filiform-like corrosion was predominant attack to the AZ31 magnesium alloys, as observed by in-situ corrosion observation. The intermetallic particle existence and grain structure significantly influenced the corrosion rate. The dendritic structure of the as-cast TRC alloy was severely attacked, revealing that the as-cast alloy was highly susceptible to corrosion. The presence of twins in wrought alloy was found to act as a corrosion barrier, while the increase in grain size showed the high corrosion rate of the alloy.


2013 ◽  
Vol 795 ◽  
pp. 530-534
Author(s):  
Shaiful Rizam Shamsudin ◽  
Azmi Rahmat ◽  
Mahdi Che Isa ◽  
Mohd Nazree Derman ◽  
Abdul Razak Daud

The aim of the study is to identify the effect of Ca in Mg-Mn alloy on electrochemical corrosion behavior for the development of high performance sacrificial anode. Mg alloys were fabricated by casting technique under an inert atmosphere. 0.35 ~ 1.11 wt.% of Ca were added as alloying element. The finding shows that the addition of small Ca in Mg-Mn anodes was found not significantly affecting the corrosion rate. However, small content of Ca was as much as necessary improving electronegativity of open circuit potential and modifying anodic polarization in promoting the instabilities of surface passive layer hence results in the further dissolution process between ion and alloy species underneath. No passivation occurs on the standard samples. Pitting profile only occur on Mg-Mn anode that has lower Ca content (0.35 wt. %). An XRD result shows no present of Mg2Ca phase on the as-cast anode containing 1.11 wt. % Ca. As a conclusion, the influence of small content of Ca was profoundly modifying electrochemically behaviour of Mg containing Mn anodes except corrosion rate.


2014 ◽  
Vol 68 (3) ◽  
pp. 279-288 ◽  
Author(s):  
Svetlana Ivanov ◽  
Mirjana Rajcic-Vujasinovic ◽  
Jasmina Petrovic ◽  
Vesna Grekulovic ◽  
Srba Mladenovic

This paper presents the investigation results of the electrochemical behavior of copper in 1 M Na2CO3 solution in the presence of potassium ethyl xanthate (KEtX) with different concentrations. Tests were conducted on copper samples obtained without deformation and with deformation of 83, 91 and 99 %. Samples were obtained by cold drawing of wire, which was previously obtained by dip-forming procedure. Corrosion behavior of cold deformed copper wire is characterized by its open circuit potential and behavior during anodic polarization. Experiments were carried out in aqueous solution 1 M Na2CO3 with added various amounts of KEtX between 0.008 g/l and 0.15 g/l. It was experimentally proved that the degree of deformation between 83 and 99 % does not have a large effect on the open circuit potential, as well as on the behavior of copper during anodic polarization in 1 M Na2CO3. Voltammograms show no significant differences between peak heights obtained for different electrodes. The first peak which occurs at potential of around -0.06 V vs. SCE corresponds to the formation of copper oxide Cu2O. The second wide peak is at potential of around 0.15 V vs. SCE and corresponds to the formation of CuO. Addition of potassium ethyl xanthate in alkaline 1 M Na2CO3 solution changes the mechanism of the process in anodic part, which is reflected in the change of shape of voltammograms. In presence of KEtX in concentration between 0.008 g/l and 0.15 g/l on voltammograms a sharp peak appears at potential of about -0.2 V vs. SCE and corresponds to the oxidation of xanthate. Current density, which determines the rate of the process which takes place at the electrode surface, yet in the presence of smallest amounts of KEtX (<0,08 g/l) is higher than in the absence of KEtX. It allows one to conclude that the processes of oxidation of copper accelerate in presence of potassium ethyl xanthate.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3759
Author(s):  
Peter Jurči ◽  
Aneta Bartkowska ◽  
Mária Hudáková ◽  
Mária Dománková ◽  
Mária Čaplovičová ◽  
...  

Sub-zero treatment of Vanadis 6 steel resulted in a considerable reduction of retained austenite amount, refinement of martensite, enhancement of population density of carbides, and modification of precipitation behaviour. Tempering of sub-zero-treated steel led to a decrease in population density of carbides, to a further reduction of retained austenite, and to precipitation of M3C carbides, while M7C3 carbides precipitated only in the case of conventionally quenched steel. Complementary effects of these microstructural variations resulted in more noble behaviour of sub-zero-treated steel compared to the conventionally room-quenched one, and to clear inhibition of the corrosion rate at the same time.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 744
Author(s):  
Ameeq Farooq ◽  
Umer Masood Chaudry ◽  
Ahsan Saleem ◽  
Kashif Mairaj Deen ◽  
Kotiba Hamad ◽  
...  

To protect steel structures, zinc coatings are mostly used as a sacrificial barrier. This research aims to estimate the dissolution tendency of the electroplated and zinc-rich cold galvanized (ZRCG) coatings of a controlled thickness (35 ± 1 μm) applied via brush and dip coating methods on the mild steel. To assess the corrosion behavior of these coated samples in 3.5% NaCl and 10% NaCl containing soil solutions, open circuit potential (OCP), cyclic polarization (CP), and electrochemical impedance spectroscopy (EIS) tests were performed. The more negative OCP and appreciably large corrosion rate of the electroplated and ZRCG coated samples in 3.5% NaCl solution highlighted the preferential dissolution of Zn coatings. However, in saline soil solution, the relatively positive OCP (>−850 mV vs. Cu/CuSO4) and lower corrosion rate of the electroplated and ZRCG coatings compared to the uncoated steel sample indicated their incapacity to protect the steel substrate. The CP scans of the zinc electroplated samples showed a positive hysteresis loop after 24 h of exposure in 3.5% NaCl and saline soil solutions attributing to the localized dissolution of the coating. Similarly, the appreciable decrease in the charge transfer resistance of the electroplated samples after 24 h of exposure corresponded to their accelerated dissolution. Compared to the localized dissolution of the electroplated and brush-coated samples, the dip-coated ZRCG samples exhibited uniform dissolution during the extended exposure (500 h) salt spray test.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 119
Author(s):  
Dana H. Abdeen ◽  
Muataz A. Atieh ◽  
Belabbes Merzougui

The inhibition behavior of carbon nanotubes (CNTs) and Gum Arabic (GA) on the corrosion of 316L stainless steel in CNTs–water nanofluid under the effect of different temperatures was investigated by electrochemical methods and surface analysis techniques. Thereby, 316L stainless steel samples were exposed to CNTs–water nanofluid under temperatures of 22, 40, 60 and 80 °C. Two concentrations of the CNTs (0.1 and 1.0 wt.% CNTs) were homogenously dispersed in deionized water using the surfactant GA and tested using three corrosion tests conducted in series: open circuit test, polarization resistance test, and potentiodynamic scans. These tests were also conducted on the same steel but in solutions of GA-deionized water only. Tests revealed that corrosion increases with temperature and concentration of the CNTs–water nanofluids, having the highest corrosion rate of 32.66 milli-mpy (milli-mil per year) for the 1.0 wt.% CNT nanofluid at 80 °C. In addition, SEM observations showed pits formation around areas of accumulated CNTs that added extra roughness to the steel sample. The activation energy analysis and optical surface observations have revealed that CNTs can desorb at higher temperatures, which makes the surface more vulnerable to corrosion attack.


2021 ◽  
Vol 882 ◽  
pp. 96-103
Author(s):  
A.D. Vishwanatha ◽  
D.M. Shivanna ◽  
Bijayani Panda

In-situ AlxNiy reinforced aluminium matrix composites (AMCs) were produced by stir-casting route by adding 5, 10 and 15 weight percentage (wt.%) of Ni to AA6061 aluminum alloy. The density, porosity, microstructure, hardness and corrosion behaviour of the as-cast AMCs was studied and compared with that of the as-cast AA6061 alloy. The porosity in all the castings was found to be less than 0.1%. Further, the porosity was found to decrease with increase in Ni addition. Optical microscopy studies showed that in-situ formed AlxNiy was distributed along the dendritic arms. The distribution became non-homogeneous and coarse with increase in AlxNiy content. The coarse distribution of AlxNiy in the AA6061 matrix also resulted in the decrease in hardness of the composite, after an initial increase in hardness till 10 wt.% Ni addition. The open circuit potential (OCP) and corrosion potential (Ecorr) of the AMCs with 5, 10 and 15 wt. of % Ni addition was noble than that of the AA6061 alloy. This was understood to be due to the presence of AlxNiy intermetallic which is known to have a noble corrosion potential than the aluminium alloy. However, the corrosion current (icorr) increased while the polarization resistance (Rp) decreased with increase in Ni addition in the AMC. This indicates that the coarse non-homogeneous distribution of in-situ AlxNiy had a detrimental effect on the corrosion performance of the AMCs.


Author(s):  
M. Väisänen ◽  
P. Vuoristo ◽  
T. Mäntylä ◽  
V. Maunu ◽  
P. Lintunen ◽  
...  

Abstract Titanium carbide cermet spray powder was produced by the SHS process (Self-propagating High-temperature Synthesis) using elemental Ti, C, Mo and prealloyed CrNiMo powders as starting materials. The powder was characterised (particle size distribution, phase structure, morphology) and the internal structure of each cermet particle was found out to be dense consisting of fine distribution of carbides embedded in a metallic matrix. The particle size range suitable for thermal spraying was obtained by sieving and air classifying. The coatings were prepared by HVOF spraying (DJH2600 and DJH2700). The dry abrasion wear resistance was evaluated by the rubber wheel abrasion wear test and electrochemical corrosion behaviour by open circuit potential measurements. According to the XRD analysis the amount of retained carbides in the coatings is high and the carbide phase has a spherical shape also in the coatings. The microstructure of coatings obtained is dense and the coatings possess good properties in wear and corrosion tests. WC-Co-Cr and Cr3C2-NiCr powders were used for comparison.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Ki Hong Lee ◽  
Young Hee Jung ◽  
Jun Pil Hwang ◽  
Jong Sung Sim

The present study concerns the influence of cementitious binder on electrochemical treatment of steel embedded in salt contaminated mortar. As binder, ordinary Portland cement (OPC) and ground granulated blast furnace slag (GGBS) were used and the current density of 250–750 mA/m2 was applied for 4 weeks to complete electrochemical chloride extraction. To evaluate the effect of electrochemical treatment the chloride profile and corrosion behaviour covering chloride concentration, galvanic current density, linear polarization resistance, open circuit potential, and mass loss were measured. An increase in the applied direct current density resulted in a decrease in the chloride concentration at the vicinity of steel, accompanying the mitigated corrosion damage. The performance of electrochemical treatment was more remarkable in mortar containing GGBS presumably due to binding mechanism. However, corrosion damage was more detrimental in GGBS rather than OPC at a given potential, while GGBS had superior corrosion resistance to a corrosive environment and treatment conditions. Therefore, the electrochemical treatment should be conducted prudently to evaluate the corrosion state of embedded steel depending on binder type.


Sign in / Sign up

Export Citation Format

Share Document