scholarly journals Effect of catalyst HF concentration on the electrical characteristics of ultra low-k materials

2012 ◽  
Vol 6 (2) ◽  
pp. 97-101 ◽  
Author(s):  
Zhi-Wei He ◽  
Shi-Qiu Zhu ◽  
Sheng-Li Wang ◽  
Zheng Qi ◽  
Yu-Yuan Guan

The effects of catalyst HF concentration on the dielectric and electrical properties of SiOF films are discussed. From the current density-voltage and capacitance-voltage curves, we observed that the film catalyzed with the special concentration of HF (the ratio of HF/H2O = 1/5) shows good moisture resistance, low leakage current (10-11 A/cm2 at 1 MV/cm) and high breakdown field (6 MV/cm), which can be explained by the results of Fourier transform infrared spectra. The dielectric constant value is also very low and reaches about 1.75 after annealing at the temperature of 450?C. Therefore, the concentration of HF catalyst is an important factor in the sol-gel process.

2002 ◽  
Vol 736 ◽  
Author(s):  
Yifan Xu ◽  
Paul Berger ◽  
Jai Cho ◽  
Richard B. Timmons

ABSTRACTPolyallylamine films, deposited on Si wafers by radio frequency (RF) pulsed plasma polymerization (PPP), were employed as insulating layers of metal-insulator-semiconductor (MIS) capacitors. The insulating polymer films were deposited at substrate temperatures of 25°C and 100°C. Multiple frequency capacitance-voltage (C-V) measurements indicated that an in-situ heat treatment during film deposition increased the insulator dielectric constant. The dielectric constant, calculated from the C-V data, rose from 3.03 for samples with no heat treatment to 3.55 for samples with an in-situ heat treatment. For both sample sets, the I-V data demonstrate a low leakage current value (<20fA) up to 100V with an area of 0.0307 mm2, resulting in a current density of <0.65 pA/mm2. Hysteresis in the C-V curves with differing sweep directions was more pronounced for in-situ heat-treated samples indicative of positive mobile ions.


1998 ◽  
Vol 535 ◽  
Author(s):  
M. Hong ◽  
J. Kwo ◽  
A. R. Kortan ◽  
J. P. Mannaerts ◽  
M. C. Wu ◽  
...  

AbstractSingle crystal Gd2O3 dielectric thin films were epitaxially grown on GaAs. The Gd2O3 film has a cubic structure isomorphic to Mn2O3, and is (110) oriented in single domain on the (100) GaAs surface. The oxide film has low leakage current densities ˜ 10–9 – 10–10 A/cmT2 at zero bias. Typical breakdown field is 4 MV/cm for an oxide film 185 Å thick, and >10 MV/cm for an oxide less than 50 Å thick. Both accumulation and inversion layers were observed in the Gd2O3-GaAs metal oxide semiconductor (MOS) diodes using capacitance-voltage (C-V) measurements, with an interfacial density of states around 1011 cm–2 eV–1.


1999 ◽  
Vol 14 (7) ◽  
pp. 2712-2715 ◽  
Author(s):  
Jianming Zeng ◽  
Chenglu Lin ◽  
Jinhua Li ◽  
Kun Li

A novel sol-gel-hydrothermal process for preparation of highly oriented thin films of Pb(Zr0.52Ti0.48)O3 is reported. Pb(Zr0.52Ti0.48)O3 thin films with fully (111) orientation were successfully prepared on platinized silicon substrates at low temperature (100–200 °C) by combining a conventional sol-gel process and hydrothermal method, i.e., sol-gel-hydrothermal technique. The x-ray rocking curve for the (111) reflection as measured by a high-resolution four-crystal diffractrometer showed a narrow full width at half-maximum value of 0.20° for the as-prepared films. A dense, pinhole-free, and uniform surface morphology was observed from atomic force microscopy images of the films. The low leakage current density of the prepared films was also found.


2000 ◽  
Vol 622 ◽  
Author(s):  
Margarita P. Thompson ◽  
Gregory W. Auner ◽  
Changhe Huang ◽  
James N. Hilfiker

ABSTRACTAlN films with thicknesses from 53 to 79 nm were deposited on 6H-SiC substrates via Plasma Source Molecular Beam Epitaxy (PSMBE). The influence of deposition temperature on the growth mode and film roughness was assessed. The optical constants of the films in the range 0.73-8.75 eV were determined using spectroscopic ellipsometry. Pt/AlN/6H-SiC MIS structures were created and current-voltage (I-V) and capacitance-voltage (C-V) measurements were performed at room temperature and at 250°C. Most of the MIS structures showed rectifying I-V characteristics regardless of growth temperature. A 120-nm-thick AlN film was deposited at 500°C. MIS structures created on this film showed a very low leakage current densities of 6×10−8 A/cm2. The dielectric constant of the film was estimated at approximately 9. The relation between film structure and electrical properties of the films is discussed.


Author(s):  
T. M. Correia ◽  
Q. Zhang

Full-perovskite Pb 0.87 Ba 0.1 La 0.02 (Zr 0.6 Sn 0.33 Ti 0.07 )O 3 (PBLZST) thin films were fabricated by a sol–gel method. These revealed both rhombohedral and tetragonal phases, as opposed to the full-tetragonal phase previously reported in ceramics. The fractions of tetragonal and rhombohedral phases are found to be strongly dependent on film thickness. The fraction of tetragonal grains increases with increasing film thickness, as the substrate constraint throughout the film decreases with film thickness. The maximum of the dielectric constant ( ε m ) and the corresponding temperature ( T m ) are thickness-dependent and dictated by the fraction of rhombohedral and tetragonal phase, with ε m reaching a minimum at 400 nm and T m shifting to higher temperature with increasing thickness. With the thickness increase, the breakdown field decreases, but field-induced antiferroelectric–ferroelectric ( E AFE−FE ) and ferroelectric–antiferroelectric ( E FE−AFE ) switch fields increase. The electrocaloric effect increases with increasing film thickness. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’.


Author(s):  
Swati Gupta ◽  
Anil Gaikwad ◽  
Ashok Mahajan ◽  
Lin Hongxiao ◽  
He Zhewei

Low dielectric constant (Low-[Formula: see text]) films are used as inter layer dielectric (ILD) in nanoelectronic devices to reduce interconnect delay, crosstalk noise and power consumption. Tailoring capability of porous low-[Formula: see text] films attracted more attention. Present work investigates comparative study of xerogel, aerogel and porogen based porous low-[Formula: see text] films. Deposition of SiO2 and incorporation of less polar bonds in film matrix is confirmed using Fourier Transform Infra-Red Spectroscopy (FTIR). Refractive indices (RI) of xerogel, aerogel and porogen based low-[Formula: see text] films observed to be as low as 1.25, 1.19 and 1.14, respectively. Higher porosity percentage of 69.46% is observed for porogen-based films while for shrinked xerogel films, it is lowered to 45.47%. Porous structure of low-[Formula: see text] films has been validated by using Field Emission Scanning Electron Microscopy (FE-SEM). The pore diameters of porogen based annealed samples were in the range of 3.53–25.50 nm. The dielectric constant ([Formula: see text]) obtained from RI for xerogel, aerogel and porogen based films are 2.58, 2.20 and 1.88, respectively.


Author(s):  
Н.А. Малеев ◽  
М.А. Бобров ◽  
А.Г. Кузьменков ◽  
А.П. Васильев ◽  
М.М. Кулагина ◽  
...  

Optimal capacitance-voltage characteristic is critical for heterobarrier varactor diode (HBV) performance in terms of multiplication efficiency in mm- and sub-mm wave ranges. Numerical model of capacitance-voltage characteristics and leakage current for HBV with arbitrary heterostructure composition and doping profile was verified on published data and original experimental results. Designed HBV heterostructure with three undoped InAlAs/AlAs/InAlAs barriers surrounded with non-uniformly doped n-InGaAs modulation layers was grown by molecular-beam epitaxy on InP substrate and test HBV diodes have been fabricated. Test HBV diodes demonstrate capacitance-voltage characteristics with cosine shape at bias voltage up to two volts, increased capacitance ratio and low leakage current values.


2011 ◽  
Vol 485 ◽  
pp. 257-260 ◽  
Author(s):  
Takayuki Watanabe ◽  
Ai Fukumori ◽  
Yuji Akiyamna ◽  
Yuuki Sato ◽  
Shinzo Yoshikado

The effect of simultaneously adding Zr and Y to Bi–Mn–Co–Sb–Si–Cr–Ni-added ZnO varistors (having the same composition as a commercial varistor) on the varistor voltage, leakage current, and resistance to electrical degradation were investigated. Varistor voltage increased with increasing amount of Y for addition of 0–2 mol % Zr. On the other hand, the nonlinear coefficient α prior to electrical degradation changed very little on the addition of both Y and Zr. With the addition of approximately 1 mol% Zr, the leakage current decreased with increasing amount of Y added. A ZnO varistor with a varistor voltage of approximately 600 V/m, a low leakage current, and excellent resistance to electrical degradation was fabricated by adding approximately 2 mol% Y and approximately 1 mol% Zr.


2008 ◽  
Vol 47-50 ◽  
pp. 973-976 ◽  
Author(s):  
Yi He Zhang ◽  
Qing Song Su ◽  
Li Yu ◽  
Hong Zheng ◽  
Hai Tao Huang ◽  
...  

A sol-gel process was used to prepare polyimide-silica hybrid films from the polyimide precursors and TEOS in N,N- dimethyl acetamide, then the hybrid film was treated with hydrofluoric acid to remove the dispersed silica particles, leaving pores with diameters between 80nm to 1µm, depending on the size of silica particles. The structure and dielectric constant of the hybrid and porous films were characterized by FTIR,SEM. The porous films displayed relatively low dielectric constant compared to the hybrid polyimide-silica films.


Sign in / Sign up

Export Citation Format

Share Document