Viral Infection

2013 ◽  
Author(s):  
Jason A. Castellanos ◽  
Nipun B. Merchant

Although surgeons are seldom required to treat viral infections, viral infection exposure should still be a topic of concern to surgeons, because infection can cause illness in patients after surgery, and can spread to the hospital staff. This review discusses the prevention of transmission of HIV and hepatitis B and C viruses and the management of exposure to these viruses. A discussion of virus size and structure is presented, and six methods for detection are reviewed: serologic testing, isolation of virus, histologic examination, detection of viral antigens, detection of viral nucleic acid, and electron microscopy. Also discussed are viral infections that are of interest to surgeons, including HIV, hepatitis, herpes viruses, and viral infections from animal bites. This review contains 5 figures, 10 tables, 1 diagnostic HIV algorithm, and 137 references.

2014 ◽  
Vol 155 (26) ◽  
pp. 1019-1023
Author(s):  
Judit Gervain

The successful therapy of hepatitis C viral infection requires that the illness is diagnosed before the development of structural changes of the liver. Testing is stepwise consisting of screening, diagnosis, and anti-viral therapy follow-up. For these steps there are different biochemical, serological, histological and molecular biological methods available. For screening, alanine aminotransferase and anti-HCV tests are used. The diagnosis of infection is confirmed using real-time polymerase chain reaction of the viral nucleic acid. Before initiation of the therapy liver biopsy is recommended to determine the level of structural changes in the liver. Alternatively, transient elastography or blood biomarkers may be also used for this purpose. Differential diagnosis should exclude the co-existence of other viral infections and chronic hepatitis due to other origin, with special attention to the presence of autoantibodies. The outcome of the antiviral therapy and the length of treatment are mainly determined by the viral genotype. In Hungary, most patients are infected with genotype 1, subtype b. The polymorphism type that occurs in the single nucleotide located next to the interleukin 28B region in chromosome 19 and the viral polymorphism type Q80K for infection with HCV 1a serve as predictive therapeutic markers. The follow-up of therapy is based on the quantitative determination of viral nucleic acid according to national and international protocols and should use the same method and laboratory throughout the treatment of an individual patient. Orv. Hetil., 2014, 155(26), 1019–1023.


2021 ◽  
Author(s):  
Rishi K. Gupta ◽  
Joshua Rosenheim ◽  
Lucy C. Bell ◽  
Aneesh Chandran ◽  
Jose A. Guerra-Assuncao ◽  
...  

AbstractWe hypothesised that host-response biomarkers of viral infections may contribute to early identification of SARS-CoV-2 infected individuals, critical to breaking chains of transmission. We identified 20 candidate blood transcriptomic signatures of viral infection by systematic review and evaluated their ability to detect SARS-CoV-2 infection, compared to the gold-standard of virus PCR tests, among a prospective cohort of 400 hospital staff subjected to weekly testing when fit to attend work. The transcriptional signatures had limited overlap, but were mostly co-correlated as components of type 1 interferon responses. We reconstructed each signature score in blood RNA sequencing data from 41 individuals over sequential weeks spanning a first positive SARS-CoV-2 PCR, and after 6-month convalescence. A single blood transcript for IFI27 provided the highest accuracy for discriminating individuals at the time of their first positive viral PCR result from uninfected controls, with area under the receiver operating characteristic curve (AUROC) of 0.95 (95% confidence interval 0.91–0.99), sensitivity 0.84 (0.7–0.93) and specificity 0.95 (0.85–0.98) at a predefined test threshold. The test performed equally well in individuals with and without symptoms, correlated with viral load, and identified incident infections one week before the first positive viral PCR with sensitivity 0.4 (0.17–0.69) and specificity 0.95 (0.85–0.98). Our findings strongly support further urgent evaluation and development of blood IFI27 transcripts as a biomarker for early phase SARS-CoV-2 infection, for screening individuals such as contacts of index cases, in order to facilitate early case isolation and early antiviral treatments as they emerge.


Author(s):  
William B. McCombs ◽  
Cameron E. McCoy

Recent years have brought a reversal in the attitude of the medical profession toward the diagnosis of viral infections. Identification of bacterial pathogens was formerly thought to be faster than identification of viral pathogens. Viral identification was dismissed as being of academic interest or for confirming the presence of an epidemic, because the patient would recover or die before this could be accomplished. In the past 10 years, the goal of virologists has been to present the clinician with a viral identification in a matter of hours. This fast diagnosis has the potential for shortening the patient's hospital stay and preventing the administering of toxic and/or expensive antibiotics of no benefit to the patient.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Zacharioudaki ◽  
Ippokratis Messaritakis ◽  
Emmanouil Galanakis

AbstractThe role of vitamin D in innate and adaptive immunity is recently under investigation. In this study we explored the potential association of genetic variances in vitamin D pathway and infections in infancy. Τhis prospective case–control study included infants 0–24 months with infection and age-matched controls. The single nucleotide polymorphisms of vitamin D receptor (VDR) gene (BsmI, FokI, ApaI, TaqI), vitamin D binding protein (VDBP) (Gc gene, rs7041, rs4588) and CYP27B1 (rs10877012) were genotyped by polymerase chain reaction-restriction fragment length polymorphism. In total 132 infants were enrolled, of whom 40 with bacterial and 52 with viral infection, and 40 healthy controls. As compared to controls, ΤaqI was more frequent in infants with viral infection compared to controls (p = 0.03, OR 1.96, 95% CI 1.1–3.58). Moreover, Gc1F was more frequent in the control group compared to infants with viral infection (p = 0.007, OR 2.7, 95% CI 1.3–5.6). No significant differences were found regarding the genetic profile for VDR and VDBP in infants with bacterial infection compared to the controls and also regarding CYP27B1 (rs10877012) between the studied groups. Genotypic differences suggest that vitamin D pathway might be associated with the host immune response against viral infections in infancy.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 798
Author(s):  
Mara Cirone

The response to invading pathogens such as viruses is orchestrated by pattern recognition receptor (PRR) and unfolded protein response (UPR) signaling, which intersects and converges in the activation of proinflammatory pathways and the release of cytokines and chemokines that harness the immune system in the attempt to clear microbial infection. Despite this protective intent, the inflammatory response, particularly during viral infection, may be too intense or last for too long, whereby it becomes the cause of organ or systemic diseases itself. This suggests that a better understanding of the mechanisms that regulate this complex process is needed in order to achieve better control of the side effects that inflammation may cause while potentiating its protective role. The use of specific inhibitors of the UPR sensors or PRRs or the downstream pathways activated by their signaling could offer the opportunity to reach this goal and improve the outcome of inflammation-based diseases associated with viral infections.


2021 ◽  
Vol 12 (3) ◽  
pp. 580-591
Author(s):  
Deepak Subedi ◽  
Suman Bhandari ◽  
Saurav Pantha ◽  
Uddab Poudel ◽  
Sumit Jyoti ◽  
...  

African swine fever (ASF) is a highly contagious viral infection of domestic and wild pigs with high mortality. First reported in East Africa in the early 1900s, ASF was largely controlled in domestic pigs in many countries. However, in recent years ASF outbreaks have been reported in several countries in Europe and Asia. The occurrence of ASF in China, the largest pork producer in the world, in 2018 and in India, the country that surrounds and shares open borders with Nepal, has increased the risk of ASF transmission to Nepal. Lately, the pork industry has been growing in Nepal, overcoming traditional religious and cultural biases against it. However, the emergence of viral infections such as ASF could severely affect the industry's growth and sustainability. Because there are no effective vaccines available to prevent ASF, the government should focus on preventing entry of the virus through strict quarantine measures at the borders, controls on illegal trade, and effective management practices, including biosecurity measures.


1982 ◽  
Vol 63 (2) ◽  
pp. 51-52
Author(s):  
V. A. Anokhin ◽  
A. D. Tsaregorodtsev

The aim of this work was to study the parameters of the components of the kinin blood system in children with severe forms of acute respiratory viral infections (ARVI) with neurotoxicosis syndrome. 55 children with ARVI (aged from 1 to 6 months - 14, from 6 months to 1 year - 18, from 1 to 3 years - 11, from 3 to 7 years - 12). 38 patients were admitted in the first three days of illness, 12 - on 4-5 days and 5 - at a later date. 30 children had a severe form of acute respiratory viral infection and 25 - moderate. Adenovirus infection was diagnosed in 14 patients, influenza - in 16, parainfluenza - in 7, MS-viral infection in 5, mixed viral infection - in 13. The control group consisted of 10 apparently healthy children.


2016 ◽  
Vol 2 (10) ◽  
pp. e1600492 ◽  
Author(s):  
Roberto Danovaro ◽  
Antonio Dell’Anno ◽  
Cinzia Corinaldesi ◽  
Eugenio Rastelli ◽  
Ricardo Cavicchioli ◽  
...  

Viruses are the most abundant biological entities in the world’s oceans, and they play a crucial role in global biogeochemical cycles. In deep-sea ecosystems, archaea and bacteria drive major nutrient cycles, and viruses are largely responsible for their mortality, thereby exerting important controls on microbial dynamics. However, the relative impact of viruses on archaea compared to bacteria is unknown, limiting our understanding of the factors controlling the functioning of marine systems at a global scale. We evaluate the selectivity of viral infections by using several independent approaches, including an innovative molecular method based on the quantification of archaeal versus bacterial genes released by viral lysis. We provide evidence that, in all oceanic surface sediments (from 1000- to 10,000-m water depth), the impact of viral infection is higher on archaea than on bacteria. We also found that, within deep-sea benthic archaea, the impact of viruses was mainly directed at members of specific clades of Marine Group I Thaumarchaeota. Although archaea represent, on average, ~12% of the total cell abundance in the top 50 cm of sediment, virus-induced lysis of archaea accounts for up to one-third of the total microbial biomass killed, resulting in the release of ~0.3 to 0.5 gigatons of carbon per year globally. Our results indicate that viral infection represents a key mechanism controlling the turnover of archaea in surface deep-sea sediments. We conclude that interactions between archaea and their viruses might play a profound, previously underestimated role in the functioning of deep-sea ecosystems and in global biogeochemical cycles.


2018 ◽  
Vol 7 (2) ◽  
pp. 50-55
Author(s):  
Li Han

AbstractThe harms of seasonal flu and global pandemic influenza have generally attracted attention. However, the currently administered influenza drugs and flu vaccines have certain limitations. Since the discovery of the small interfering RNA (siRNA) and its mediated RNA interference process, this molecule has been widely used in the study of anti-influenza viral infections because of its high specificity and strong selectivity. The results provided new concepts for the prevention and treatment of influenza virus. However, the siRNA still faces an enormous challenge despite extensive studies on this molecule. The research progress of siRNA in anti-influenza viral infection was reviewed in this study.


2019 ◽  
Author(s):  
Paulino Barragan-Iglesias ◽  
Úrzula Franco-Enzástiga ◽  
Vivekanand Jeevakumar ◽  
Andi Wangzhou ◽  
Vinicio Granados-Soto ◽  
...  

ABSTRACTOne of the first signs of viral infection is body-wide aches and pain. While this type of pain usually subsides, at the extreme, viral infections can induce painful neuropathies that can last for decades. Neither of these types of pain sensitization are well understood. A key part of the response to viral infection is production of interferons (IFNs), which then activate their specific receptors (IFNRs) resulting in downstream activation of cellular signaling and a variety of physiological responses. We sought to understand how type I IFNs (IFN-α and IFN-β) might act directly on nociceptors in the dorsal root ganglion (DRG) to cause pain sensitization. We demonstrate that type I IFNRs are expressed in small/medium DRG neurons and that their activation produces neuronal hyper-excitability and mechanical pain in mice. Type I IFNs stimulate JAK/STAT signaling in DRG neurons but this does not apparently result in PKR-eIF2α activation that normally induces an anti-viral response by limiting mRNA translation. Rather, type I interferons stimulate MNK-mediated eIF4E phosphorylation in DRG neurons to promote pain hypersensitivity. Endogenous release of type I IFNs with the double stranded RNA mimetic poly(I:C) likewise produces pain hypersensitivity that is blunted in mice lacking MNK-eIF4E signaling. Our findings reveal mechanisms through which type I IFNs cause nociceptor sensitization with implications for understanding how viral infections promote pain and can lead to neuropathies.SIGNIFICANCE STATEMENTIt is increasingly understood that pathogens interact with nociceptors to alert organisms to infection as well as to mount early host defenses. While specific mechanisms have been discovered for diverse bacteria and fungal pathogens, mechanisms engaged by viruses have remained elusive. Here we show that type 1 interferons, one of the first mediators produced by viral infection, act directly on nociceptors to produce pain sensitization. Type I interferons act via a specific signaling pathway (MNK-eIF4E signaling) that is known to produce nociceptor sensitization in inflammatory and neuropathic pain conditions. Our work reveals a mechanism through which viral infections cause heightened pain sensitivity


Sign in / Sign up

Export Citation Format

Share Document