Research: Replacing Overhead Paging with Smartphones to Reduce Hospital Noise

2020 ◽  
Vol 54 (4) ◽  
pp. 251-257
Author(s):  
Colleen A. Hughes Driscoll ◽  
Michael Cleveland ◽  
Samuel Gurmu ◽  
Sarah Crimmins ◽  
Dina El-Metwally

Abstract Hospital noise is associated with adverse effects on patients and staff. Communication through overhead paging is a major contributor to hospital noise. Replacing overhead paging with smartphones through a clinical mobility platform has the potential to reduce transitory noises in the hospital setting, though this result has not been described. The current study evaluated the impact of replacing overhead paging with a smartphone-based clinical mobility platform on transitory noise levels in a labor and delivery unit. Transitory noises were defined as sound levels greater than 10 dB above baseline, as recorded by a sound level meter. Prior to smartphone implementation, 77% of all sound levels at or above 60 dB were generated by overhead paging. Overhead pages occurred at an average rate of 3.17 per hour. Following smartphone implementation, overhead pages were eliminated and transitory noises decreased by two-thirds (P < 0.001). The highest recorded sound level decreased from 76.54 to 57.34 dB following implementation. The percent of sounds that exceeded the thresholds recommended by the Environmental Protection Agency and International Noise Council decreased from 31.2% to 0.2% following implementation (P < 0.001). Replacement of overhead paging with a clinical mobility platform that utilized smartphones was associated with a significant reduction in transitory noise. Clinical mobility implementation, as part of a noise reduction strategy, may be effective in other inpatient settings.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Piotr F. Czempik ◽  
Agnieszka Jarosińska ◽  
Krystyna Machlowska ◽  
Michał P. Pluta

Abstract Sleep disruption is common in patients in the intensive care unit (ICU). The aim of the study was to measure sound levels during sleep-protected time in the ICU, determine sources of sound, assess the impact of sound levels and patient-related factors on duration and quality of patients' sleep. The study was performed between 2018 and 2019. A commercially available smartphone application was used to measure ambient sound levels. Sleep duration was measured using the Patient's Sleep Behaviour Observational Tool. Sleep quality was assessed using the Richards-Campbell Sleep Questionnaire (RCSQ). The study population comprised 18 (58%) men and 13 (42%) women. There were numerous sources of sound. The median duration of sleep was 5 (IQR 3.5–5.7) hours. The median score on the RCSQ was 49 (IQR 28–71) out of 100 points. Sound levels were negatively correlated with sleep duration. The cut-off peak sound level, above which sleep duration was shorter than mean sleep duration in the cohort, was 57.9 dB. Simple smartphone applications can be useful to estimate sound levels in the ICU. There are numerous sources of sound in the ICU. Individual units should identify and eliminate their own sources of sound. Sources of sound producing peak sound levels above 57.9 dB may lead to shorter sleep and should be eliminated from the ICU environment. The sound levels had no effect on sleep quality.


2003 ◽  
Vol 37 (4) ◽  
pp. 35-40 ◽  
Author(s):  
Arthur N. Popper ◽  
Jane Fewtrell ◽  
Michael E. Smith ◽  
Robert D. McCauley

Anthropogenic sound in the marine environment continues to increase. Sound sources range from increased vessel traffic to transient but intense sounds such as those produced by seismic air guns, pile driving, or some sonars. While most interest in anthropogenic sounds has focused on marine mammals, there is an increasing concern regarding the impact of such sounds on fishes and marine invertebrates. Since the inner ear hearing receptors of fishes are similar to those of marine mammals, any effects seen on the hearing receptors of marine mammals may also be found in fishes and vice versa. Despite increasing interest in the effects of sounds on fishes, this issue has only been addressed on the most limited scale. Here we review the current literature in this area. It has been reported that high sound levels can damage the inner ear sensory cells, produce hearing loss (threshold shifts), elicit stress responses, and alter the behavior of fishes. At least in terms of hearing loss, these effects are modulated by exposure sound level and duration. The effects of various types of sound (e.g., impulsive vs. continuous) and long-term impacts of how anthropogenic sounds affect the behavior and ecology of fishes need exploration in the future.


2006 ◽  
Vol 25 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Jacqueline Byers ◽  
W. Randolph Waugh ◽  
Linda Lowman

Purposes: To provide descriptive information about the sound levels to which high-risk infants are exposed in various actual environmental conditions in the NICU, including the impact of physical renovation on sound levels, and to assess the contributions of various types of equipment, alarms, and activities to sound levels in simulated conditions in the NICU.Design: Descriptive and comparative design.Sample: Convenience sample of 134 infants at a southeastern quarternary children’s hospital.Main Outcome Variable: A-weighted decibel (dBA) sound levels under various actual and simulated environmental conditions.Results: The renovated NICU was, on average, 4–6 dBA quieter across all environmental conditions than a comparable nonrenovated room, representing a significant sound level reduction. Sound levels remained above consensus recommendations despite physical redesign and staff training. Respiratory therapy equipment, alarms, staff talking, and infant fussiness contributed to higher sound levels.Conclusion: Evidence-based sound-reducing strategies are proposed. Findings were used to plan environment management as part of a developmental, family-centered care, performance improvement program and in new NICU planning.


2002 ◽  
Vol 116 (9) ◽  
pp. 695-698 ◽  
Author(s):  
Alasdair Robertson ◽  
Brian Bingham ◽  
George McIlwraith

A patient presented to the authors with unilateral sensorineural hearing loss after falling asleep with his ear tightly pressed against a window of a moving train. This study set out to determine whether a train could generate sound levels of sufficient intensity to cause such a hearing loss. A sound level meter was used to measure the sound levels produced at the window of a moving train. Further measurements were made with a rubber attachment on the microphone, that simulated the effect of the ear stuck to the window. The sound levels were found to be amplified by the attachment but not to levels that could cause a hearing loss over a short period. In a second experiment eight healthy volunteers all perceived an increase in sound levels when their ears were pressed against a train window.It seems unlikely that sleeping with an ear against a train window can cause hearing loss, but it cannot be ruled out.


2008 ◽  
Vol 122 (12) ◽  
pp. 1305-1308 ◽  
Author(s):  
M H Fritsch

AbstractPurpose:To determine the decibel sound pressure levels generated during extracorporeal lithotripsy for salivary stones, and if such lithotriptor noise levels have the potential for acoustic trauma.Patients and materials:Minilith SL-1 salivary gland lithotriptor, sound level meter; five patient survey.Methods:Decibel measurements were conducted on the lithotripter-generated sounds, using a sound level meter at specific distances from the active element. In addition, a patient survey was conducted as a cross-reference, to enable comparison of predicted results with actual human perception of sound levels.Results:Sound levels ranged between 68 and 80 dB during treatment sessions, for both the lithotriptor operator and the patient.Conclusion:During routine use, no acoustic trauma is incurred by either the lithotriptor operator or the patient.


2013 ◽  
Vol 5 (4) ◽  
pp. 337-342
Author(s):  
Monika Bartkevičiūtė ◽  
Raimondas Grubliauskas

Along with an increase in the aircraft engine power and growth in air traffic, noise level at airports and their surrounding environs significantly increases. Aircraft noise is high level noise spreading within large radius and intensively irritating the human body. Air transport is one of the main sources of noise having a particularly strong negative impact on the environment. The article deals with activities and noises taking place in the largest nationwide Vilnius International Airport.The level of noise and its dispersion was evaluated conducting research on the noise generated by emerging and descending aircrafts in National Vilnius Airport. Investigation was carried out at 2 measuring points located in a residential area. There are different types of aircrafts causing different sound levels. It has been estimated the largest exceedances that occur when an aircraft is approaching. In this case, the noisiest types of aircrafts are B733, B738 and AT72. The sound level varies from 70 to 85 dBA. The quietest aircrafts are RJ1H and F70. When taking off, the equivalent of the maximum sound level value of these aircrafts does not exceed the authorized limits. The paper describes the causes of noise in aircrafts, the sources of origin and the impact of noise on humans and the environment. Article in Lithuanian. Santrauka Padidėjus orlaivių variklių galiai ir daugėjant skrydžių, labai padidėjo oro uostuose ir šalia jų esančiose apylinkėse skleidžiamo triukšmo lygis. Lėktuvo keliamas triukšmas išsiskiria aukštu garso slėgio lygiu bei dideliu spinduliu sklindančiu garsu ir yra labiausiai dirginantis žmogaus organizmą. Orlaivių transportas – vienas pagrindinių triukšmo šaltinių, darantis ypač didelę neigiamą įtaką aplinkai. Nagrinėjamas Tarptautiniame Vilniaus oro uoste kylančių ir tupiančių orlaivių keliamas triukšmas. Triukšmo tyrimai atlikti gyvenamojoje aplinkoje greta oro uosto parinktose matavimo vietose. Pateikiami įvairių orlaivių tipų sukeliamo garso stiprumo – garso slėgio lygiai. Didžiausias leistinųjų verčių viršijimas nustatomas orlaiviams leidžiantis. Triukšmingiausi B733, B738 ir AT72 tipo orlaiviai – garso slėgio lygis 70–85 dBA. Vieni tyliausių orlaivių – RJ1H ir F70. Jiems kylant ekvivalentinės ir maksimalios garso slėgio lygio reikšmės neviršija leidžiamųjų. Aprašomos orlaivių keliamo triukšmo priežastys, kilimo šaltiniai. Nagrinėjamas triukšmo poveikis žmogui ir aplinkai.


Author(s):  
Yula C. Serpanos ◽  
Janet R. Schoepflin ◽  
Steven R. Cox ◽  
Diane Davis

Abstract Background The accuracy of smartphone sound level meter applications (SLMAs) has been investigated with varied results, based on differences in platform, device, app, available features, test stimuli, and methodology. Purpose This article determines the accuracy of smartphone SLMAs with and without calibration of external and internal microphones for measuring sound levels in clinical rooms. Research Design Quasi-experimental research design comparing the accuracy of two smartphone SLMAs with and without calibration of external and internal microphones. Data Collection and Analysis Two iOS-based smartphone SLMAs (NIOSH SLM and SPL Meter) on an iPhone 6S were used with and without calibrated external and internal microphones. Measures included: (1) white noise (WN) stimuli from 20 to 100 dB sound pressure level in a sound-treated test booth and (2) sound levels in quiet in four nonsound-treated clinical rooms and in simulated background sound conditions using music at 45, 55, and 80 dBA. Chi-square analysis was used to determine a significant difference (p ≤ 0.05) in sound measures between the SLMAs and a Type 1 SLM. Results Measures of WN signals and room sound level measures in quiet and simulated background sound conditions were significantly more accurate at levels ≥ 40 dBA using the SLMAs with calibrated external and internal microphones. However, SLMA measures with and without calibration of external and internal microphones overestimated sound levels < 40 dBA. Conclusion The SLMAs studied with calibrated external or internal microphones are able to verify the room environment for audiologic screening at 1,000, 2,000, and 4,000 Hz at 20 dB hearing level (American Academy of Audiology and American Speech-Language-Hearing Association) using supra-aural earphones (American National Standards Institute S3.1–1999 [R2018]). However, the tested SLMAs overestimated low-level sound < 40 dBA, even when the external or internal microphones were calibrated. Clinicians are advised to calibrate the microphones prior to using measurement systems involving smartphones and SLMAs to measure room sound levels and to monitor background noise levels throughout the provision of clinical services.


2021 ◽  
Vol 31 (Supplement_2) ◽  
Author(s):  
Ana Ferreira ◽  
Silvia Seco ◽  
João Paulo Figueiredo ◽  
António Loureiro ◽  
António Gomes

Abstract Background Currently, we can find a more industrialized and developed society that has contributed to the large-scale expansion of sound levels. Noise is already identified as one of the main risk factors for the health of workers, due to the high frequency of workers daily exposed and risky professional activities. In this sense, it is necessary to carry out assessments of occupational noise in order to understand whether or not workers' exposure is within the limit values and what preventive measures to adopt. Methods The present study had as main objective to evaluate the occupational exposure to noise of the workers of a carpentry, located in a municipality in the Center of Portugal, and to understand its influence on their health. Measurements were performed using two devices, a Cesva dosimeter, model DC 112 and a Cesva model SC420 sound level meter. Results The results obtained demonstrated the existence of noise in some of the evaluated workstations and also the existence of some workers exposed to high levels of noise. It was also possible to observe that although all workers have hearing protection, it is not always effective. Conclusions We conclude that carpentry is a noise-producing work environment, and with the help of appropriate collective and/or individual protective equipment, it is possible to mitigate this exposure to noise, either by workers or by machines/equipment, ensuring thus the safety and health of workers.


2018 ◽  
Vol 24 (6) ◽  
pp. 437-443 ◽  
Author(s):  
Marek Jabłoński ◽  
Iwona Szer ◽  
Jacek Szer

The paper presents the results of measurements for one hundred and ten scaffolds located in five cities in different parts of Poland. Measurements were made between April of 2016 and October of 2017. The environmental tests performed on scaffoldings were focused mainly on the sound level. The parameters on which we base our analysis are the value of C-weighted peak sound levels and daily noise exposure level. The noise that affects construction workers on scaffolding may influence the behaviour of workers and increase the risk of accidents. And at the same time, noise exposure laws facilitate identification of high noise-emitting activities and provide effective preventive measures that reduce noise pollution and improve work environments. The analyses carried out confirmed the qualitatively expected dependencies, and allowed us to quantify the impact of noise to which scaffolding workers are exposed. In summary, noise measurements on scaffoldings can be a valuable aid in improving working conditions. The analysis of research results allows understanding hazards related to noise in an accessible way. They provide the opportunity to modify the professional environment so that it is more employee-friendly and does not expose them to problems occurring in a noisy work environment.


2021 ◽  
Vol 263 (4) ◽  
pp. 2157-2163
Author(s):  
Sydney Perry ◽  
Tessa Bent ◽  
Erica Ryherd ◽  
Melissa Baese-Berk

Hospital noise often exceeds recommended sound levels set by health organizations leading to reductions in speech intelligibility and communication breakdowns between doctors and patients. However, quantifying the impact of hospital noise on intelligibility has been limited by stimuli employed in prior studies, which did not include medically related terminology. To address this gap, a corpus of medically related sentences was developed. Word frequency, word familiarity, and sentence predictability, factors known to impact intelligibility of speech, were quantified. Nearly 700 words were selected from the Merriam-Webster Medical Dictionary. Word frequency was taken from Lexique, a 51-million-word corpus of American subtitles (Brysbaert & New, 2009). Word familiarity was rated by 41 monolingual listeners. The words were then used to construct 200 sentences. To determine sentence predictability, the sentences were presented to 48 participants with one word missing; their task was to fill in the missing word. Three 40 item sentence sets with different familiarity / frequency types (low/low, high/low, high/high) were selected, all with low predictability levels. These sentences and 40 standard speech perception sentences were recorded by two male and two female talkers. This corpus can be used to assess how hospital noise impacts intelligibility across listener populations. Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41, 977-990. doi:10.3758/BRM.41.4.977.


Sign in / Sign up

Export Citation Format

Share Document