scholarly journals Activation of Cement Clinker as Catalysts for Transesterification Reaction of Palm Oil Off Grade to Biodiesel

2019 ◽  
Vol 14 (2) ◽  
pp. 147-154
Author(s):  
Karina Octaria Putri ◽  
Dhani Nur Miftahudin ◽  
Zuchra Helwani ◽  
Syaiful Bahri

Calcium oxide (CaO) is a heterogeneous solid base which is generally used as a catalyst in making biodiesel. It is mainly obtained from cement clinker and activated through calcination method. The purpose of this study was to determine the effect of using cement clinker catalyst on the yield of the biodiesel. A batch reactor with a condenser was used in making the biodiesel under favorable conditions such as calcination temperatures of 700 °C, 750 °C and 800 °C, time of 5, 6 and 7 hours, and catalyst concentration of 1%-w, 2%-w, and 3%-w oil. The analysis involved X-Ray Diffraction (XRD) and Brunauer-Emmett-Teller (BET) for catalysts and Gas Chromatography-Mass Spectrometry (GC-MS). The catalyst calcination temperature determined the optimum conditions. From this study, the conditions necessary for transesterification reaction include the mole ratio of methanol/oil of 6 to 1, the temperature of 70 °C for 2 hours and 700 °C for 5 hours, and catalyst dosage of 2% by weight. Under these conditions, the yield of the biodiesel was 84.26%. Additionally, at the calcination temperature of 800 °C for 7 hours and catalyst dosage of 3% by weight, the yield of the biodiesel was 76.84%. CaO, SiO2, 2CaO.SiO2 and 3CaO.SiO2 were found in the catalyst through XRD analysis. The specific surface areas of the catalyst were 25,497 m2/g (700 °C/5 hours) and 35,879 m2/g (800 °C/7 hours) through BET analysis. According to the GC-MS analysis, the main components of the biodiesel include methyl palmitate, methyl oleate, and methyl stearate.

2020 ◽  
Vol 15 (1) ◽  
pp. 31-37
Author(s):  
Karfika Ainil Hawa ◽  
Zuchra Helwani ◽  
Amun Amri

A heterogeneous catalyst, such as Calcium Oxide (CaO), is widely used in biodiesel production due to its various advantages over homogeneous ones. The optimum condition for synthesizing this catalyst is determined by calcination temperature and mass ratio. As a result, a modification is required to increase its performance in improving the biodiesel yield. In this study, eggshell waste was modified by calcination, hydration, and dehydration methods integrated with activated carbon and NaOH. It is used as a heterogeneous base catalyst for off-grade palm oil transesterification reactions. The results shows the catalyst with the highest activity is obtained at calcination temperature of 800°c and mass ratio of 7 to 3. This is achieved with transesterification reaction conditions, which include a mole ratio of methanol/oil 6 to 1, catalyst concentration of 6%-b oil, and temperature 70°c for 3 hours, yielding 79.08% of the biodiesel. Additionally, CaO, Na2CO3, and Ca (OH) 2 materials were found in the catalyst with a catalyst alkalinity value of H greater than 9.3 through X-ray diffraction (XRD) analysis. Several methyl esters, such as palmitate and oleate were also found in biodiesel through Gas Chromatography-Mass Spectrometry (GC-MS) analysis.


2017 ◽  
Vol 13 (2) ◽  
pp. 133 ◽  
Author(s):  
Arie Hardian ◽  
Alvi Aristia Ramadhiany ◽  
Dani Gustaman Syarif ◽  
Senadi Budiman

<p>The aim of this work was to determine the effect of calcination temperature on the characteristics of Fe<sub>2</sub>O<sub>3</sub> nanoparticles (NPs) in sol-gel synthesis. The obtained Fe<sub>2</sub>O<sub>3 </sub>NPs was then used as material for preparation of Fe<sub>2</sub>O<sub>3</sub>-water nanofluids. Nanofluids is a mixture between basic fluid like water and 1 - 100 nm solid particles (nanoparticles). Nanoparticles of Fe<sub>2</sub>O<sub>3</sub> have been synthesized from the local mineral Jarosite using sol-gel method by using starfruit (<em>Averrhoa bilimbi</em>) extracts as the chelating agent. The calcination temperature was then varied from 500 ºC to 700 ºC for 5 hours. Based on the X-Ray Diffraction (XRD) analysis, the diffraction pattern of obtained Fe<sub>2</sub>O<sub>3</sub> was relevant with the JCPDS data No. 33-0664 for α-Fe<sub>2</sub>O<sub>3 </sub>with hexagonal crystallite system. The crystallite size (Scherrer’s Equation) of obtained α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles at calcination temperatures of 500 ºC, 600 ºC and 700 ºC was 50 nm, 48 nm and 40 nm, respectively. The Surface Area of Fe<sub>2</sub>O<sub>3</sub> NPs at temperature of 500 ºC, 600 ºC and 700 ºC was 45.45 m<sup>2</sup>/g; 26.91 m<sup>2</sup>/g and 17.51 m<sup>2</sup>/g, respectively. Fe<sub>2</sub>O<sub>3</sub>-water nanofluids was relativly stable with zeta potential of -39.60 mV; -46.37 mV and -41.57 mV, respectively for 500 ºC, 600 ºC and 700 ºC calcination temperature. The viscosity of Fe<sub>2</sub>O<sub>3</sub>-water nanofluids was higher than the viscosity of water. The critical heat flux (CHF) value of water-Fe<sub>2</sub>O<sub>3</sub> nanofluids was higher than the CHF water. The highest CHF value for nanofluids was obtained by using α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles with calcination temperature of 600 ºC which 34.99 % of increment compare to the base fluid (water).</p>


2020 ◽  
Vol 2 (1) ◽  
pp. 42-49
Author(s):  
Slamet Priyono

Synthesis of Lithium Manganese Oxide (LiMn2O4) for Lithium Ion Battery Cathodes with Solution Method has been conducted. This experiment was carried out using the solution method. In this study, the synthesis was carried out by varying the calcination temperature. The raw materials used were Lithium Acetate (C2H3O2Li), Manganese Acetate (C4H6MnO4.4H2O), Hydrochloric Acid (HCl), and Ethanol (C2H5OH) as solvents which were dissolved to become LiMn2O4 precursors. Synthesis was carried out at calcination temperatures of 600oC, 700oC and 800oC, for 4 hours then pounded with a mortar until smooth. The characterization includes: The results of the STA test at 280oC-380oC showed a mass decrease of 11.9973% due to the release of mass of water vapor and decomposition of C4H6MnO4.4H2O raw material. XRD analysis shows that the increase in peak temperature of the LiMn2O4 phase intensity is getting sharper, the peak showing the impurity Li2O phase decreases. SEM analysis results show that the higher the calcination temperature, the larger the particle size is formed, because in the calcination process the densification process occurs.


2016 ◽  
Vol 10 (3) ◽  
pp. 189-198 ◽  
Author(s):  
Marija Vasic ◽  
Marjan Randjelovic ◽  
Milan Momcilovic ◽  
Branko Matovic ◽  
Aleksandra Zarubica

In this study, modified sol-gel method was employed to synthesize the pure and Zr-doped titania catalysts. Brunauer-Emmett-Teller (BET) method was applied to determine porosity, X-ray diffraction (XRD) analysis was used to study crystal structure, scanning electron microscopy (SEM) was used to investigate morphology and Fourier transform infrared spectroscopy (FTIR) was used to examine surface properties/total acidity of the obtained catalysts samples. Photocatalytic activity was tested in the reaction of crystal violet (CV) dye decolourization/degradation under UV light irradiation. The effects of several photocatalysis operational parameters were considered, such as catalyst dosage, initial dye concentrations, duration of UV irradiation treatment, as well as catalysts calcination temperatures and dopant amounts. The obtained results indicated faster dye decolourization/degradation with the increase of the catalyst dosage and the decrease of initial CV concentrations. The Zr-doping affects photocatalytic properties, i.e. CV decolourization/degradation of the prepared catalytic materials. Thus, addition of 5 wt.% of ZrO2 to titania increases photocatalytic effect for ~15% and addition of 10 wt.% of ZrO2 improves the photocatalytic efficiency of titania for nearly 30%.


2020 ◽  
Vol 49 (12) ◽  
pp. 3135-3142
Author(s):  
Damisih Damisih ◽  
Ade Utami Hapsari ◽  
Agustanhakri Agustanhakri ◽  
Yelvia Deni ◽  
Oka Pradipta Arjasa ◽  
...  

Gadolinium doped cerium (Ce0.9Gd0.1O1.95 or GDC10) was successfully synthesized using the solid-state method. Commercially available CeO2 and Gd2O3 powders were used as starting materials. They were mixed in a ball mill where alumina balls were added as grinding medium with the ratio to powders as of 1:2. The obtained powders were dried and then calcined at temperatures of 600, 700 and 800 °C, respectively. The objective of this research was to investigate the effects of calcination temperature on the properties of GDC10. The powders were characterized using XRF, TGA, XRD, and PSA instruments. XRF analysis shows the presence of Ce, Gd and O elements in stoichiometric composition without any impurities. XRD analysis showed single phase structure of CeO2 where the crystallite size and lattice parameter increases and decreases, respectively, as the calcination temperature increases. The smallest particle size of 647.3 nm was obtained at the calcination temperature of 600 °C. The density of all GDC10 samples sintered at 1350 °C was found to be higher than 95%. In addition, the calcination temperature also influenced the ionic conductivity where the highest obtained value was 0.0153 S.cm-1 at 800 °C for the sample calcinaed at 600 °C. The results suggest that the calcination temperature affected the properties of GDC10 for solid oxide fuel cell application.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. Saikumari ◽  
S. Monish Dev ◽  
S. Avinaash Dev

AbstractIn order to deal with the arising environmental issues across the globe at present nano particles with unique properties laid a benchmark in the name of nano catalysis. In this work the significance of calcination temperature on the thermal, electronic, structural and surface properties of a nano catalyst produced by sol–gel method using ultrasonic radiation against the disposal of toxic textile pollutants is studied in detail. The extract of tea leaves has been used as a bio-template during the synthesis to revise the crystallite size, surface area, optical absorption potential, and rate of agglomeration of nano sized grains by regulating their physico-chemical and surface properties. The influence of calcination in the transformation of single phased anatase titania to mixed phase anatase–rutile titania and the corresponding outcome in its photocatalytic activity employed in water treatment applications have been verified. The nano catalyst obtained is characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transition electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), Thermo gravimetric analysis (TGA), Brunaueur Emmett Teller (BET) analysis, UV–Vis diffused reflectance spectroscopy (DRS-UV–Vis) etc. The mesoporosity of the particle was examined using Barrett Joyner Halenda (BJH) model. The enhanced photo catalytic efficiency (about 97.7%) of templated nano titania due to calcination is verified against Congo red, a textile dye under optimized conditions. The nano catalyst produced can be easily separated, recycled to support its economic feasibility.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 579
Author(s):  
Sang-Ho Chung ◽  
Adrian Ramirez ◽  
Tuiana Shoinkhorova ◽  
Ildar Mukhambetov ◽  
Edy Abou-Hamad ◽  
...  

The Lebedev process, in which ethanol is catalytically converted into 1,3-butadiene, is an alternative process for the production of this commodity chemical. Silica–magnesia (SiO2–MgO) is a benchmark catalyst for the Lebedev process. Among the different preparation methods, the SiO2–MgO catalysts prepared by wet-kneading typically perform best owing to the surface magnesium silicates formed during wet-kneading. Although the thermal treatment is of pivotal importance as a last step in the catalyst preparation, the effect of the calcination temperature of the wet-kneaded SiO2–MgO on the Lebedev process has not been clarified yet. Here, we prepared and characterized in detail a series of wet-kneaded SiO2–MgO catalysts using varying calcination temperatures. We find that the thermal treatment largely influences the type of magnesium silicates, which have different catalytic properties. Our results suggest that the structurally ill-defined amorphous magnesium silicates and lizardite are responsible for the production of ethylene. Further, we argue that forsterite, which has been conventionally considered detrimental for the formation of ethylene, favors the formation of butadiene, especially when combined with stevensite.


2015 ◽  
Vol 29 (01) ◽  
pp. 1450254 ◽  
Author(s):  
M. Shayani Rad ◽  
A. Kompany ◽  
A. Khorsand Zak ◽  
M. E. Abrishami

Pure and silver added zinc oxide nanoparticles ( ZnO -NPs and ZnO : Ag -NPs) were synthesized through a modified sol–gel method. The prepared samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. In the XRD patterns, silver diffracted peaks were also observed for the samples synthesized at different calcination temperatures of 500°C, 700°C, 900°C except 1100°C, in addition to ZnO . TEM images indicated that the average size of ZnO : Ag -NPs increases with the amount of Ag concentration. The PL spectra of the samples revealed that the increase of Ag concentration results in the increase of the visible emission intensity, whereas by increasing the calcination temperature the intensity of visible emission of the samples decreases.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Panya Khaenamkaew ◽  
Dhonluck Manop ◽  
Chaileok Tanghengjaroen ◽  
Worasit Palakawong Na Ayuthaya

The electrical properties of tin dioxide (SnO2) nanoparticles induced by low calcination temperature were systematically investigated for gas sensing applications. The precipitation method was used to prepare SnO2 powders, while the sol-gel method was adopted to prepare SnO2 thin films at different calcination temperatures. The characterization was done by X-ray diffraction, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The samples were perfectly matched with the rutile tetragonal structure. The average crystallite sizes of SnO2 powders were 45 ± 2, 50 ± 2, 62 ± 2, and 65 ± 2 nm at calcination temperatures of 300, 350, 400, and 450°C, respectively. SEM images and AFM topographies showed an increase in particle size and roughness with the rise in calcination temperature. The dielectric constant decreased with the increase in the frequency of the applied signals but increased on increasing calcination temperature. By using the UV-Vis spectrum, the direct energy bandgaps of SnO2 thin films were found as 4.85, 4.80, 4.75, and 4.10 eV for 300, 350, 400, and 450°C, respectively. Low calcination temperature as 300°C allows smaller crystallite sizes and lower dielectric constants but increases the surface roughness of SnO2, while lattice strain remains independent. Thus, low calcination temperatures of SnO2 are promising for electronic devices like gas sensors.


Paliva ◽  
2020 ◽  
pp. 155-161
Author(s):  
Tomáš Hlinčík ◽  
Veronika Šnajdrová ◽  
Veronika Kyselová

Alumina is commonly used in industrial practice as a catalyst support and it is made from boehmite. Depending on the calcination temperature, this mineral is transformed into various crystalline modifications which have different physical and chemical properties. For this reason, the following parameters were determined at different calcination temperatures: length, width, material hardness, specific surface area and total pore volume. The results show that with increasing calcination temperature there have been significant changes which may be important when using the material as a catalyst support, e.g. in the preparation of catalysts or in the design of cat-alytic reactors. The specific surface area, which decreases in the temperature range 450–800 °C, is an important parameter for the preparation of catalysts, so it is appropriate to choose a temperature of 600 °C, when the specific surface area is above 200 m2·g-1. The effect of calcination temperature on the structural transitions of boehmite was also monitored. The results showed that γ-Al2O3 has the most suitable properties as a catalyst sup-port in the temperature range 450–800 °C.


Sign in / Sign up

Export Citation Format

Share Document