scholarly journals Analisis Batubara Jenis Antrasit di PTBA Berdasarkan Kandungan Volatile Matter dan Kalori

2020 ◽  
Vol 1 (1) ◽  
pp. 23-26
Author(s):  
Yohanes W.M Purba ◽  
◽  
Pulung Karo Karo ◽  
Ediman Ginting ◽  
◽  
...  

This research Coal is one of the sedimentary fossil fuels that can ignite, is formed from organic sediment, and the remains of plants are then formed through the process of coalification. The main element consists of carbon, hydrogen, and oxygen. The formation of coal has certain conditions and only occurs in certain eras throughout geological history. The carbon age was approximately 340 million years ago. In the Permian Age or the Paleozoic era, 270 million also formed the most productive coal which is almost the entire coal deposit (black coal) in other parts of the earth. In this study we conducted at the Laboratory of PT. Bukit Asam tbk. Observation Results in the Study of Average Volatile Matter 19.11, Max Volatile Matter value 38.34, Min Vollatie Matter value 11.34. And the Average Calorie Result of 7578.5 Kacl / Kg, Max Calorie Value of 8046 Kcal / Kg. In this study, it was proved that coal samples were Anthracite types.

2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Romdhane Ben Slama

The global warming which preoccupies humanity, is still considered to be linked to a single cause which is the emission of greenhouse gases, CO2 in particular. In this article, we try to show that, on the one hand, the greenhouse effect (the radiative imprisonment to use the scientific term) took place in conjunction with the infrared radiation emitted by the earth. The surplus of CO2 due to the combustion of fossil fuels, but also the surplus of infrared emissions from artificialized soils contribute together or each separately,  to the imbalance of the natural greenhouse effect and the trend of global warming. In addition, another actor acting directly and instantaneously on the warming of the ambient air is the heat released by fossil fuels estimated at 17415.1010 kWh / year inducing a rise in temperature of 0.122 ° C, or 12.2 ° C / century.


1935 ◽  
Vol 72 (8) ◽  
pp. 377-380 ◽  
Author(s):  
P. R. Thompson

Consideration of the continental areas over which the sea spread at various times during the course of geological history leads to the impression that perhaps every part of the land surface of the earth was, at one time or another, raised from a position below sea-level. The present land surface seems to have grown around ancient nuclei owing to the compression of the granitic, sedimentary, and other rocks of which the continental layers are composed. At certain times the compressive forces acted so strongly upon these rocks that the average height of the land reached maximum values, which might have been as great as 3,000 feet. Then denudation, and perhaps other processes, coming into operation and persisting through ages of comparative quiescence, lowered the surface, sometimes to minimum average levels, which might have been as low as 500 feet. There have been a few comparatively short periods of exceptionally high relief, separated by longer periods of low relief. Assuming that the land was raised by horizontal compression, the diminution in surface area of the earth necessary to produce a change in level of 2,500 feet would be very considerable. Instead of considering the change from a minimum average height of 500 feet to a maximum of 3,000 feet, it may be more convenient in the first place to consider the elevation of, say, the continental layers of Dr. H. Jeffreys from sea-level to the average height of the present land surface, that is about 2,500 feet, or 762 metres. It will be supposed, then, that the continental layers, as they now exist, were developed from layers consisting of 1 km. of sediments of specific gravity 2·4, 10 km. of granite of specific gravity 2·6, and 20 km. of tachylyte of specific gravity 2·9, the whole resting on dunite of specific gravity 3·3.


Author(s):  
Irfan Danial Hashim ◽  
Ammar Asyraf Ismail ◽  
Muhammad Arief Azizi

Solar Tracker The generation of power from the reduction of fossil fuels is the biggest challenge for the next half century. The idea of converting solar energy into electrical energy using photovoltaic panels holds its place in the front row compared to other renewable sources. But the continuous change in the relative angle of the sun with reference to the earth reduces the watts delivered by solar panel. Conventional solar panel, fixed with a certain angle, limits their area of exposure from the sun due to rotation of the earth. Output of the solar cells depends on the intensity of the sun and the angle of incidence. To solve this problem, an automatic solar cell is needed, where the Solar Tracker will track the motion of the sun across the sky to ensure that the maximum amount of sunlight strikes the panels throughout the day. By using Light Dependent Resistors, it will navigate the solar panel to get the best angle of exposure of light from the sun.


2021 ◽  
Vol 40 (2) ◽  
pp. 293-331
Author(s):  
GIAN BATTISTA VAI

Anniversaries for the two founding fathers of geology occurring in the same year prompted a comparative evaluation of how the two contributed to establishing the basic principles of the discipline. To do so, passages from their publications, codices and manuscripts have been quoted directly. The Stenonian principles (‘original horizontality’, ‘original continuity’, and ‘superposition of individual strata’) are present in Leonardo’s notebooks amazingly formulated, using similar wording when studying the same area more than 150 years earlier. Also, Stenonian priority in naming and explaining geological concepts and processes (e.g., faulting, folding, angular unconformity, relative chronology) are mirrored in Leonardo’s writings and pictorial works. While Steno enjoys priority in stepwise restoration of the geological history of a given region, Leonardo was the first to construct a 3D geological profile representation and geomorphologic maps. Lastly, the paper focuses on diverging stances of the two savants about the Noachian Deluge and the age of the Earth. Already 500 years ago, Leonardo had solved the question of marine fossil remains of organic origin found in the mountains implying the possibility of deep geologic time in a statement of ‘eternalism’. 350 years ago, Steno solved the same question in a different way in which he retained a basic role for the Deluge and assumed a short age for the Earth by focusing mainly on short-lived sedimentary and geomorphologic processes.


Author(s):  
Vivin Setiani ◽  
Adhi Setiawan ◽  
Mey Rohma Dhani ◽  
Risya Dwi Maulidya

Fossil fuels are a non-renewable energy source and their existence will be depleted. An alternative is needed that can reduce fossil fuels by using biomass. Biomass waste in the form of bagasse and coconut shell can be used as an alternative fuel in the form of biobriquette. This study aims to analyze the quality value of briquettes from the proximate test of the composition of bagasse and coconut shell produced with briquette quality standards that refer to SNI 01-6235-2000 about wood charcoal briquettes. The variables in this study consisted of five variables. The variables in this study were mass ratio coconut shells to bagasse were 90%: 10%, 80%: 20%, 70%; 30%, 60%: 40% and 50%: 50% respectively. The results of the test of water content, ash content, and volatile matter of the best quality briquettes of five variables were 90% coconut shell and 10% bagasse.


1865 ◽  
Vol 2 (17) ◽  
pp. 498-501
Author(s):  
D. Mackintosh

In the midst of a comparatively tame and highly cultivated plain of New Red Sandstone near the centre of England, there rises up a part of the under crust of the earth which presents so much the appearance of an island as to lead the imagination at once to those remote ages when its porphyritic Peaks and Syenitic Knolls were surrounded by the sea. The geological history of this celebrated spot has been skilfully unravelled by Professors Sedgwick and Jukes (Article in Potters's Charnwood Forest); the Rev. W. H. Coleman (Article in White'Directory); Mr. Edward Hull (Memoirs of Geol. Survey); and others.


1851 ◽  
Vol 141 ◽  
pp. 511-547

In the first part of these researches, I have endeavoured, by generalizing the hypothesis on which is usually founded the theory of the earth’s figure, not only to improve that theory, but also to establish a secure basis for researches into the changes which may have taken place within and at the surface of the earth during the epochs of its geological history. Although I stated that no precise physical evidence could be adduced for the examination of the assumption that the molecules of the primitive fluid, supposed to have constituted the earth, retained their positions after solidification, it yet appears that such evidence exists, if we may be permitted to draw any conclusions relative to the physical properties of substances in the earth’s interior, from the observed physical properties of substances at its surface. Professor Bischof of Bonn, has shown that Granite contracts in volume in passing from the fluid to the solid crystalline state, from 1 to ⋅7481, Trachyte from 1 to ⋅8187, and Basalt from 1 to ⋅8960. The first of these rocks appears, as far as can be observed, to constitute the greater part of the earth; hence the assumption alluded to must be considered not only as superfluous, but as erroneous. In this Part it is my object to discover relations between the interior structure of the earth and phenomena observed at its surface, and also the effects of the reaction of the fluid nucleus, described in Article 6, Part I., upon the solid crust. I divide this Part into sections, each containing a distinct investigation, the order of arrangement of these sections being determined according to their fundamental importance. The statement of the geological results capable of being deduced from these investigations is, for greater clearness, reserved for the end. Such of these results as chiefly depend on the validity of the reasonings used in Section III. are presented with some diffidence, owing to the imperfect experimental knowledge we possess respecting the subjects discussed in that section. The diminution of the earth’s mean radius by refrigeration is neglected all through, except where the contrary is specially mentioned.


In this communication the author states that, having in Part I. (read to the Society in December 1846) endeavoured, by generalizing the hypothesis on which is usually founded the theory of the earth’s figure, not only to improve that theory, but also to establish a secure basis for researches into the changes which may have taken place, within and at the surface of the earth, during the epochs of its geological history, his object here is to discover relations between the interior structure of the earth and phenomena observed at its surface, and also the effects of the reaction of the fluid nucleus, described in Part I., upon the solid crust. This memoir is divided into sections, each containing a distinct investigation; and the statement of the geological results is given at the end. I. The Pressures of the Shell and Nucleus at their surface of contact . In the investigation of these pressures the earth is supposed to consist of a nucleus of fluid matter inclosed in a solid shell, the inner and outer surfaces of which are spheroidal, but nearly spherical; and both shell and nucleus are supposed to consist of strata varying in density according to some unknown inverse law of the radii. The pressure at the inner surface of the shell is conceived to be due to a constant pressure, which is the same for every point, and a variable pressure, arising from the difference in form of the surface of the nucleus and inner surface of the shell. On these suppositions, simple expressions for the pressure on any stratum of the nucleus and on the shell’s inner surface are deduced.


2017 ◽  
Vol 1 (1) ◽  
pp. 113
Author(s):  
Lisa Mariati ◽  
Yusbarina Yusbarina

AbstractHuman needs on fossil fuels is increasing, but the source is limited.  Thus, a renewable alternative source is needed.  One of them is Biomass.  Biomass fuel can be in the form of bio-briquette. Bio-briquette utilization as fuel is based on the carbon content contained in Biomass such as peat and bagasse.  This research aimed at knowing bio-briquette quality as fuel and learning source at senior high school.  Bio-briquette prepared with variation of peat and bagasse mass composition were 40: 0, 30: 10, 20: 20, 10: 30, 0: 40 (g: g).  Bio-briquette was made by using 20 g adhesive kanji.  Bio-briquette quality tested was done by testing the water content, ash content, volatile matter, fixed carbon, calorific value, and duration of flame.  Bio-briquette the best quality is the mass variation of G 10g: 30g AT with water content of 3.93%, ash content of 6.33%, volatile matter of 46.60%, fixed carbon of 43.14%, calorific  value of 5986 cal / g , duration of flame 210 minutes and the mass variation 0g G: 40g AT with water content of 2.33%, ash content of 3.83%, volatile matter of 49.47%, calorific value of 6198 cal / g, duration of flame 250 minutes. Preparing bio-briquette of peat and bagasse as learning source on chemistry material and its implementation was on the category of good (93.33%). Keywords: Bio-briquette, Peat, Bagasse, Quality test


Author(s):  
Anton Mychak

The analysis of the development of methods for remote sensing of the Earth in the oil and gas prospecting industry in the period from 1979 to 1992 in the Kiev Department of the Institute of Geology and Fossil Fuels Development of the USSR Ministry of Petroleum Industry and the USSR Academy of Sciences (KD IG FFD) is presented. The structure and main scientific and methodological problems that were solved by the team of specialists of the KD IG FFD are given. The main scientific and methodological results of the Kiev department are presented: maps, methodological recommendations, successful results of forecasting oil and gas prospecting structures on the territory of Ukraine and oil and gas provinces of the former USSR. The leading role of KD IG FFD in the training of specialists in the use of aerospace methods in the study of oil and gas bearing regions and, in general, nature management is emphasized.


Sign in / Sign up

Export Citation Format

Share Document