scholarly journals Bioactivity of Origanum oil on Staphylococcus aureus

2008 ◽  
Vol 2 (1) ◽  
pp. 51-56
Author(s):  
Adel Abed Hasony ◽  
Alaa abas Fadhil ◽  
Khulood Al-Samarrae

The studies revealed that plants oil possesses Antimicrobial properties, the origanum oil organized by a broad spectrum of antimicrobial activity. This oil extract from the Origanum vulgare found in medeternian mountain especially in Turkey. biological activities were studied to determine the effect of origanum oil on Staphylococcus aureus the result revealed that origanum oil were significantly inhibited the growth of the selected bacteria . The study showed that origanum oil has Bactericidal of effect.The inhibition zone (Hz) was determinant by using different concentration from oil as (0.5, 0.25, 0.125)mg/ml . Minimal inhibitory concentration (MIC) of oil was estimated by using different concentration as (1/10, 1/20, 1/30, 1/40, 1/50) µg/mL, the MIC of bacteria was 1/30.

2016 ◽  
Vol 53 ◽  
pp. 57-64
Author(s):  
Radia Mahboub ◽  
Faiza Memmou

We have studied the antimicrobial properties of 6-bromoeugenol and eugenol by three strains:Pseudomonas aeruginosa(S1),Escherichia coli(S2) andStaphylococcus aureus(S3). We have determined the minimum inhibitory concentration (MIC) for a range of concentrations using the disc diffusion method. We note that all samples present an antimicrobial activity toward the tested bacterial strains at different concentrations (1, 0.5 and 0.25 mg/ml). The 6-bromoeugenol gives modest activity with (S1) and (S3). Eugenol reacts positively with thePseudomonas aeruginosa(S1) at all concentrations and with theEscherichiacoli(S2) at 0.5 mg/ml. We remark that thePseudomonas aeruginosa(S1) is the more sensitive strain thanEscherichiacoli(S2) andStaphylococcus aureus(S3). We have estimated the activity coefficient which has confirmed the antimicrobial activity of the different samples. So, 6-bromoeugenol has shown his efficiency as antimicrobial agent.


2016 ◽  
Vol 3 (1) ◽  
pp. 7-10
Author(s):  
A. M. Yusuf Babatunde ◽  
L. S. Kasim ◽  
Adegbite A. Ayoade

The antimicrobial activity of oil and stem bark extracts of pentaclethra macrophylla benth was determined against staphylococcus aureus, streptococcus pneumonia, Eschericia coli, Haemophilus influenza, α-Haemolytic Streptococcus and Yeast, using hole diffusion method. The results revealed that the most inhibitory zone (25.0mm) was recorded in hexane oil extract against staphylococcus aureus and α-Haemolytic Streptococcus. The minimum inhibitory concentration (MIC) of the oil extract ranges between 7.8125-62.5mg/ml on all the test organisms and aqueous stem bark extract inhibited only Eschericia coli with minimum, inhibitory concentration (MIC) of 62.5mg/ml. However, the oil extract possessed more antimicrobial activity than the stem bark extract. These findings lend more knowledge to the use of pentaclethra macrophylla benth for medicinal purposes.  


2019 ◽  
Vol 9 (02) ◽  
Author(s):  
Hussein A Kadhum ◽  
Thualfakar H Hasan2

The study involved the selection of two isolates from Bacillus subtilis to investigate their inhibitory activity against some bacterial pathogens. B sub-bacteria were found to have a broad spectrum against test bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa. They were about 23-30 mm and less against Klebsiella sp. The sensitivity of some antibodies was tested on the test samples. The results showed that the inhibitory ability of bacterial growth in the test samples using B. subtilis extract was more effective than the antibiotics used.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1094
Author(s):  
Melissa M. Cadelis ◽  
Soeren Geese ◽  
Benedict B. Uy ◽  
Daniel R. Mulholland ◽  
Shara J. van de Pas ◽  
...  

Antimicrobial bioassay-guided fractionation of the endophytic fungi Neofusicoccum australe led to the isolation of a new unsymmetrical naphthoquinone dimer, neofusnaphthoquinone B (1), along with four known natural products (2–5). Structure elucidation was conducted by nuclear magnetic resonance (NMR) spectroscopic methods, and the antimicrobial activity of all the natural products was investigated, revealing 1 to be moderately active towards methicillin-resistant Staphylococcus aureus (MRSA) with a minimum inhibitory concentration (MIC) of 16 µg/mL.


2019 ◽  
Vol 50 (3) ◽  
pp. 197-202 ◽  
Author(s):  
A. Lauková ◽  
V. Strompfová ◽  
M. Tomáška ◽  
M. Kološta

Abstract Žinčica is a popular Slovak dairy product made from ewes’ milk. It is a by-product resulting during ewes’ lump cheese processing. Microbiota in Žinčica have rarely been studied, especially enterococci; however, they can produce beneficial substances – bacteriocins. In this study, the presence of Enterocins (Ents) genes were analysed in enterococci from Žinčica and partially also the inhibition activity. Samples of Žinčica were collected from different agrofarms producing ewes’ lump cheese (34) in Central Slovakia. In the enterococci tested, Ent P gene was the most frequently detected (in 6 out of 7 enterococci), followed by Ent A and Ent L50B genes. Ent B gene was detected only in E. faecium 30E1. On the other hand, E. faecalis 31E2 did not contain Ent genes, although it showed inhibition activity against the indicator strains Enterococcus avium EA5, Staphylococcus aureus SA5, Listeria monocytogenes CCM4699 (inhibition zone sizing up to 20 mm). E. faecium 30E1 contained genes of four Ents; however, it showed no inhibition activity. Growth of the four indicators was inhibited due to the antimicrobial activity of E. faecium 32E1 with Ent P gene detection. This is the first study reporting on the occurrence of Ent genes in enterococci from Žinčica.


2012 ◽  
Vol 5 (1) ◽  
pp. 135-141
Author(s):  
M. Waziri ◽  
J. S. Suleiman

The evaporated extract of cow dung is traditionally used in Northern Nigeria and Cameroun as food additive and in treatment of infectious diseases. In this study, the cow dung ash extract was prepared and tested for some elemental contents as well as the antimicrobial activity against Cyanobacteria (C.bacteria), Staphylococcus aureus (S.aureus), Bacillus subtilis (B.subtilis) and Escherichia coli (E.coli) using different analytical techniques. The extract was highly basic with pH of 11.7 and the elements vary in the following decreasing order of concentration; K>Na>Mg>Ca>Fe>Al>Zn.  S. aureus was the most sensitive bacteria with minimum inhibitory concentration (MIC) value of 0.082 mg/mL while B. subtilis was the least sensitive with MIC value of 4.3 mg/mL. The result of this study indicate that the extract can supplement the dietary Na and K requirements for the users and supports the folkloric use of the extract in treatment of infections.© 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi: http://dx.doi.org/10.3329/jsr.v5i1.11962        J. Sci. Res. 5 (1), 135-141 (2013)


1983 ◽  
Vol 38 (1-2) ◽  
pp. 151-152 ◽  
Author(s):  
Ferdinand Devínsky ◽  
Ivan Lacko ◽  
Ludovít Krasnec ◽  
Dušan Mlynarčík

Antimicrobial activity of N,N′-bis(decylmethyl)-α,ω-alkanediamine dioxides determined on Staphylococcus aureus, Escherichia coli, and Candida albicans is presented as minimal inhibitory concentration (MIC). The effect of the length of linking alkylene chain on this activity has been followed.


2016 ◽  
Vol 6 (2) ◽  
pp. 70-76
Author(s):  
Soumia Keddari ◽  
Narimen Benaoum ◽  
Yasmina Mokhtaria Boufadi ◽  
Mansouria Belhocine ◽  
Ali Riazi

Medicinal plants have been used for countries as cures for human diseases because they contain components of therapeutic value. Among these medi-cinal plants, Ammi visnage which have an immense reservoir of potential compounds attributed to the secondary metabolites which have the advan-tage of being of great diversity of chemical structure and have a very wide range of biological activities. The objectives of the present work were to stu-dy the antioxidant and antimicrobial activity of phenolic compounds ex-tracted from A. visnaga L. Its extraction is performed by two methods, etha-nol extraction and water extraction. The results showed that A. visnaga L.. ethanolic extract contains a mixture of phytochemical classes as polyphenol, flavonoids and revealed that this plant has high antioxidant activity (IC50 0.069 mg/ml). Regarding the antimicrobial activity results expressed by the diameter of the inhibition zones by diffusion method AWDT, the most signifi-cant inhibition was observed against to Staphylococcus aureus (12 mm) to the ethanol extract at concentration of 100mg / ml. Thus the aqueous ex-tract had a significant inhibitory activity against on the strains Staphylococ-cus aureus (8 mm), E. coli ATCC 10536 (8 mm) to a concentration of 100 mg / ml. The results for the antibacterial properties have shown that Gram-positive bacteria (Staphylococcus aureus, Listeria monocytogenes and M. luteus.) were more sensitive than gram-negative (Pseudomonas aeruginosa, E. coli ATCC 10536) against from the action of phenolic compounds of the Ammi visnaga ethanolic extract.


2014 ◽  
Vol 9 (9) ◽  
pp. 1934578X1400900
Author(s):  
Camila Hernandes ◽  
Silvia H. Taleb-Contini ◽  
Ana Carolina D. Bartolomeu ◽  
Bianca W. Bertoni ◽  
Suzelei C. França ◽  
...  

Reports on the chemical and pharmacological profile of the essential oil of Schinus weinmannifolius do not exist, although other Schinus species have been widely investigated for their biological activities. This work aimed to evaluate the chemical composition and antimicrobial activity of the essential oil of S. weinmannifolius collected in the spring and winter. The essential oils were extracted by hydrodistillation, analyzed by GC/MS and submitted to microdilution tests, to determine the minimum inhibitory concentration. The oils displayed different chemical composition and antimicrobial action. Bicyclogermacrene and limonene predominated in the oils extracted in the winter and spring, respectively, whereas only the latter oil exhibited antifungal activity.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Pavithra L. Jayatilake ◽  
Helani Munasinghe

Endophytic and rhizosphere fungi are understood to be aiding the host plant to overcome a range of biotic and abiotic stresses (nutrition depletion, droughts, etc.) hence, they remain to be reservoirs of plethora of natural products with immense use. Consequently, this investigation of endophytic and rhizosphere fungi isolated from Mikania cordata (a perennial vine that is well established in Sri Lanka) for their antimicrobial properties was performed with the aim of future derivation of potential beneficial pharmaceutical products. Leaves, twigs, and roots of M. cordata were utilized to isolate a total of 9 endophytic fungi out of which the highest amount (44%) accounted was from the twigs. A sample of the immediate layer of soil adhering to the root of M. cordata was utilized to isolate 15 rhizosphere fungi. Fusarium equiseti and Phoma medicaginis were endophytes that were identified based on colony and molecular characteristics. The broad spectrum of antimicrobial activity depicted by F. equiseti (MK517551) was found to be significantly greater (p≤0.05, inhibitory against Bacillus cereus ATCC 11778, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 25853) than P. medicaginis (MK517550) (inhibitory against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 25853) as assessed using the Kirby-Bauer disk diffusion method. Trichoderma virens and Trichoderma asperellum were rhizospere fungi that exhibited remarkable antimicrobial properties against the test pathogens chosen for the study. T. asperellum indicated significantly greater bioactivity against all four bacterial pathogens and Candida albicans ATCC 10231 under study. The ranges of minimum inhibitory concentrations (MICs) of the fungi depicting antimicrobial properties were determined. The results obtained suggest that F. equiseti, P. medicaginis, T. asperellum, and T. virens of M. cordata harness bioprospective values as natural drug candidates. This is the first report on isolation and evaluation of the antimicrobial properties of endophytic and rhizosphere fungi of Mikania cordata.


Sign in / Sign up

Export Citation Format

Share Document