scholarly journals The Role of Biostimulants in Increasing Barley Plant Growth and Yield under Newly Cultivated Sandy Soil

2019 ◽  
Vol 52 (2) ◽  
pp. 116-127 ◽  
Author(s):  
S. Farouk ◽  
A.J. Al-Sanoussi

Abstract Two field experiments were done at a private farm in Kalabsho and Zayian district, Dakhlia Egypt, throughout 2014/2015 and 2015/2016 seasons, to evaluate the promotive role of chitosan (Chi, 250 and 500 mg/l) and/or sodium metasilicate (Si, 125 and 250 mg/l) foliar application on barley growth, yield, and some physiological attributes in newly reclaimed soil. Application of Si or Chi concentrations showed an improvement in plant growth as: plant height, tiller number per plant, flag leaf area and shoot dry weight; photosynthetic pigments; organic osmolytes; ion percentage, as well as yield and its quality in both growing seasons. Generally, the application of Si gave higher values in most cases than Chi application in the experimental year. It was concluded that application of 125 mg/l sodium metasilicate twice at 50 and 70 days from sowing is advantageous to improving plant growth and productivity under newly reclaimed soils.

2013 ◽  
Vol 19 (1) ◽  
pp. 45-49
Author(s):  
AKMG Sarwar ◽  
J Sultana ◽  
MO Islam ◽  
AKMA Prodhan

An experiment was conducted in the field laboratory of the Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, to investigate the effect of foliar application of Miyodo on morphology, yield contributing characters and yield of T. aman rice cv. BR-11. The concentrations of Miyodo used were 2 mgL-1, 3 mgL-1, 4 mgL-1 and 5mgL-1 with a control. The experiment was laid out in a randomized complete block design with three replications. Application of Miyodo by spraying at 45 days after transplanting significantly enhanced plant height, number of tillers and effective tillers, number of leaves and leaf area, size of flag leaf, total dry matter, panicle length, number of total grains and filled grains, 1000-grain weight, grain yield, straw yield, and harvest index. The result showed that the application of 5 mgL-1 Miyodo produced the highest grain yield of BR-11 compared to other concentrations as well as control. However, further study is needed to determine the higher concentration limit of Miyodo in maximizing the growth and yield of T. aman rice cv. BR-11.DOI: http://dx.doi.org/10.3329/pa.v19i1.17106 Progress. Agric. 19(1): 45 - 49, 2008 


2021 ◽  
Author(s):  
Tahsina Sharmin Hoque ◽  
Md. Anwarul Abedin ◽  
Mohammad Golam Kibria ◽  
Israt Jahan ◽  
Mohammad Anwar Hossain

Moringa (Moringa oleifera L.) leaf extract is a natural plant growth stimulant that is well-known for its ability to improve plant growth and development. A field study was conducted to evaluate the influence of MLE (Moringa Leaf Extract) on the growth, yield and nutritional improvement in two vegetable crops [Tomato (Solanum lycopersicum) and Indian Spinach (Basella alba)]. The extract was applied at two weeks interval with different frequencies. The crops were fertilized with chemical fertilizers and MLE application was done as per treatment @ 25 ml/plant. For each of the crops, this bio-stimulant had a significant boosting effect on growth, yield and nutrient uptake whereas the maximum frequency in the application i.e. T4 (foliar application of MLE at 2 weeks after transplanting and application at every 2 weeks thereafter) showed the highest influence. Indian Spinach responded proportionally more to foliar-applied MLE in terms of plant growth and nutrient uptake compared to tomato. The effect of MLE on the yield parameters was more pronounced in tomato that showed a 25% (averaged across all the growth parameters) increase over control, but Indian Spinach showed ~20% increase in yield parameters compared to control. Therefore, applying MLE to the foliage may assist in increasing the yield by improving plant growth across the different vegetable species (e.g., Tomato and Indian Spinach).


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1150
Author(s):  
Omnia M. Elshayb ◽  
Abdelwahed M Nada ◽  
Heba M. Ibrahim ◽  
Heba E. Amin ◽  
Ayman M. Atta

The current study was designed to assess the effect of different concentrations of silica oxide nanoparticles (SiO2NPs) (0, 30, 60, and 90 ppm) as foliar applications under three irrigation regimes i.e., irrigation every 3 days (IR3, control), irrigation every 6 days (IR6), and irrigation every 9 days (IR9) on growth, yield and certain metabolites of rice (Oryza sativa L. cv. EHR1). To achieve such a goal, 2 field experiments were conducted during the 2018 and 2019 seasons at the Experimental Farm of Rice Research and Training Center (RRTC), Sakha Agricultural Station, Kafr El-sheik, Egypt. Firstly, the as-prepared nanoparticles of SiO2 were prepared from useless materials (RHs) which are considered as one of the bio burdens on the environment via treating with HCl and followed by drying and calcination. Consequently, the synthesis was examined by making use of advanced tools such as X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS) for illustrating the hydrodynamic particle size of SiO2NPs and scanning electron microscopy (SEM). The nanoparticles were formed with nearly spherical shape and small size. The results indicated that leaf area index, dry matter production, the number of panicles/m2, the number of filled grains/ panicles, 1000 grain weight, grain yield, and biological yield as well as chlorophyll content have witnessed a significant increase under irrigated application every 3 and 6 days. Whilst a prolonged irrigation regime up to 9 days recorded a remarkable decline in the aforementioned characteristics except for the number of unfilled grains/panicle which increased considerably in both seasons. On the other hand, proline concentration and the activity of the antioxidant enzymes were increased in both irrigated treatments every 6 and 9 days compared with control treatment (irrigation every 3 days). The foliar supplementations of (SiO2NPs) contributed to ameliorating all the aforementioned characteristics progressively up to the dosage of 90 ppm compared to control treatment (no Si/NPS application) in both seasons. Invariably, growth and yield parameters in water-stressed plants treated with SiO2NPs were higher than those in water-stressed plants without SiO2NPs addition. Based on that, it could be concluded that the foliar application of SiO2NPs can mitigate the adverse effect of water stress on rice plants.


1970 ◽  
Vol 17 ◽  
pp. 17-22 ◽  
Author(s):  
Kamal Singh ◽  
A. A. Khan ◽  
Iram Khan ◽  
Rose Rizvi ◽  
M. Saquib

Plant growth, yield, pigment and protein content of cow-pea were increased significantly at lower levels (20 and 40%) of fly ash but reverse was true at higher levels (80 and 100%). Soil amended by 60% fly ash could cause suppression in growth and yield in respect to 40% fly ash treated cow-pea plants but former was found at par with control (fly ash untreated plants). Maximum growth occurred in plants grown in soil amended with 40% fly ash. Nitrogen content of cow-pea was suppressed progressively in increasing levels of fly ash. Moreover,  Rhizobium leguminosarum  influenced the growth and yield positively but Meloidogyne javanica caused opposite effects particularly at 20 and 40% fly ash levels. The positive effects of R. leguminosarum were marked by M. javanica at initial levels. However, at 80 and 100% fly ash levels, the positive and negative effects of R. leguminosarum and/or M. javanica did not appear as insignificant difference persist among such treatments.Key words:  Meloidogyne javanica; Rhizobium leguminosarum; Fly ash; Growth; YieldDOI: 10.3126/eco.v17i0.4098Ecoprint An International Journal of Ecology Vol. 17, 2010 Page: 17-22 Uploaded date: 28 December, 2010  


2018 ◽  
Vol 16 (3) ◽  
pp. e0802 ◽  
Author(s):  
Saad Farouk ◽  
Sally A. Arafa

Salinity is a global issue threatening land productivity and food production. The present study aimed to examine the role of sodium nitroprusside (SNP) on the alleviation of NaCl stress on different parameters of canola (Brassica napus L.) plant growth, yield as well as its physiological and anatomical characteristics. Canola plants were grown under greenhouse conditions in plastic pots and were exposed to 100 mM NaCl. At 50 and 70 days from sown, plants were sprayed with SNP (50 and 100 µM) solutions under normal or salinity condition. Growth and yield characters as well as some biochemical and anatomical changes were investigated under the experimental conditions. Salinity stress caused an extremely vital decline in plant growth and yield components. A significant increase was found in membrane permeability, lipid peroxidation, hydrogen peroxide, sodium, chloride, proline, soluble sugars, ascorbic and phenol in canola plants under salinity stress. Under normal conditions, SNP application significantly increased all studies characters, except sodium, chloride, hydrogen peroxide, lipid peroxidation, membrane permeability that markedly reduced. Application of SNP to salt-affected plants mitigated the injuries of salinity on plant growth, yield, and improved anatomical changes. The present investigation demonstrated that SNP has the potential to alleviate the salinity injurious on canola plants.


2021 ◽  
Author(s):  
Eman G. Sayed ◽  
Mona A. Ouis

Abstract A new glass fertilizer (GF) system of main composition 60P2O5.30K2O.3.5ZnO. 3.5MnO.3Fe2O3 was developed in response to the needs of pea plants with bio-fertilizers (Rhizobium leguminosarum. Bv.vicieae, Bacillus megaterium var phosphaticum, Bacillus circulans).GF was prepared by the traditional melt quenching technique at 1150°C. Characterization of prepared system was done using FTIR spectra before and after immersion in a simulated actual agriculture medium like 2% citric acid and distilled water. During two winter seasons, two successful field experiments were conducted at Cairo University's Eastern Farm to determine the impact of chemical, glass, and bio-fertilizers on plant growth, yield attributes, and seed quality of pea plant. Control treatment were without any addition of recommended chemical fertilizers and other treatments were full dose of recommended chemical fertilizers (100%RDF), glass fertilizers at rate 60 kg fed− 1, Glass fertilizers at rate30 kg fed− 1, 50% RDF ,100%RDF + bio-fertilizers, Glass fertilizers at rate 60 kg fed− 1 + bio-fertilizers, glass fertilizers at rate 30 kg fed− 1+ bio-fertilizers, 50%RDF + bio-fertilizers. Plots received 60 kg fed− 1 glass fertilizers + bio-fertilizers show the highest significant increment in plant growth, number and weight of pods plant− 1, number of grain pods− 1, grain yield, biological yield, P%, k% in pea leaves and quality of pea seeds compared with plots without any addition (control) in both seasons.


2020 ◽  
Vol 3 (1) ◽  
pp. 31-34
Author(s):  
M. Yasmin ◽  
M.S. Rahman ◽  
M.A. Rahman ◽  
F.S. Shikha ◽  
M.K. Alam

The experiment was conducted at Regional Agricultural Research Station (RARS), Jamalpur, Bangladesh during the period of 2019-2020 and 2020-2021 to investigate the effect of vermiwash on growth, yield and quality of brinjal and to find out suitable foliar dose of vermiwash for optimizing the yield of brinjal. There were five treatments comprising T1= Chemical fertilizer (CF) + foliar spray of distilled water (control), T2 = CF + foliar spray of 10% vermiwash, T3 = CF + foliar spray of 20% vermiwash, T4 = CF + foliar spray of 30% vermiwash and T5= CF + foliar spray of 40% vermiwash. Results revealed that, vermiwash treated brinjal plants showed better growth and yield parameters than the control plants. The highest average brinjal fruit yield (29.99 t ha-1) was found in T3 treatment i.e., foliar spray of 20% concentration of vermiwash and the lowest (26.35 t ha-1) came from control. On the other hand, nutritional quality (moisture content, TSS, β carotene and nutrient content) were seen to be higher in vermiwash treated treatment compared to control treatment. The study suggests that, 20% concentration of vermiwash could be used as effective foliar spray for eco-friendly and higher yield of brinjal.


Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 72
Author(s):  
Mazhar Abbas ◽  
Faisal Imran ◽  
Rashid Iqbal Khan ◽  
Muhammad Zafar-ul-Hye ◽  
Tariq Rafique ◽  
...  

Bitter gourd is one of the important cucurbits and highly liked among both farmers and consumers due to its high net return and nutritional value. However, being monoecious, it exhibits substantial variation in flower bearing pattern. Plant growth regulators (PGRs) are known to influence crop phenology while gibberellic acid (GA3) is one of the most prominent PGRs that influence cucurbits phenology. Therefore, a field trial was conducted at University of Agriculture Faisalabad to evaluate the impact of a commercial product of gibberellic acid (GA3) on growth, yield and quality attributes of two bitter gourd (Momordica charantiaL.) cultivars. We used five different concentrations (0.4 g, 0.6 g, 0.8 g, 1.0 g, and 1.2 g per litre) of commercial GA3 product (Gibberex, 10% Gibberellic acid). Results showed that a higher concentration of gibberex (1.0 and 1.20 g L−1 water) enhanced the petiole length, intermodal length, and yield of bitter gourd cultivars over control in Golu hybrid and Faisalabad Long. A significant decrease in the enzyme superoxidase dismutase, peroxidase, and catalase activities were observed with an increasing concentration of gibberex (1.0 and 1.20 gL−1 water) as compared to control. These results indicate that the exogenous application of gibberex at a higher concentration (1.2 g L−1) has a dual action in bitter gourd plant: i) it enhances the plant growth and yield, and ii) it also influenced the antioxidant enzyme activities in fruits. These findings may have a meaningful, practical use for farmers involved in agriculture and horticulture.


Author(s):  
Rehan Ahmad ◽  
Wajid Ishaque ◽  
Mumtaz Khan ◽  
Umair Ashraf ◽  
Muhammad Atif Riaz ◽  
...  

Tannery wastewater mainly comes from leather industries. It has high organic load, high salinity, and many other pollutants, including chromium (Cr). Tannery wastewater is generally used for crop irrigation in some areas of Pakistan and worldwide, due to the low availability of good quality of irrigation water. As tannery wastewater has many nutrients in it, its lower concentration benefits the plant growth, but at a higher concentration, it damages the plants. Chromium in tannery wastewater accumulates in plants, and causes stress at physiological and biochemical levels. In recent times, the role of micronutrient-amino acid chelated compounds has been found to be helpful in reducing abiotic stress in plants. In our present study, we used lysine chelated zinc (Zn-lys) as foliar application on maize (Zea mays L.), growing in different concentrations of tannery wastewater. Zinc (Zn) is required by plants for growth, and lysine is an essential amino acid. Maize plants were grown in tannery wastewater in four concentrations (0, 25%, 50%, and 100%) and Zn-lys was applied as a foliar spray in three concentrations (0 mM, 12.5 mM, and 25 mM) during plant growth. Plants were cautiously harvested right after 6 weeks of treatment. Foliar spray of Zn-lys on maize increased the biomass and improved the plant growth. Photosynthetic pigments such as total chlorophyll, chlorophyll a, chlorophyll b and contents of carotenoids also increased with Zn-lys application. In contrast to control plants, the hydrogen peroxide (H2O2) contents were increased up to 12%, 50%, and 68% in leaves, as well as 16%, 51% and 89% in roots at 25%, 50%, and 100% tannery water application, respectively, without Zn-lys treatments. Zn-lys significantly reduced the damages caused by oxidative stress in maize plant by decreasing the overproduction of H2O2 and malondialdehyde (MDA) in maize that were produced, due to the application of high amount of tannery wastewater alone. The total free amino acids and soluble protein decreased by 10%, 31% and 64% and 18%, 61% and 122% at 25%, 50% and 100% tannery water treatment. Zn-lys application increased the amino acids production and antioxidant activities in maize plants. Zn contents increased, and Cr contents decreased, in different parts of plants with Zn-lys application. Overall, a high concentration of tannery wastewater adversely affected the plant growth, but the supplementation of Zn-lys assertively affected the plant growth and enhanced the nutritional quality, by enhancing Zn and decreasing Cr levels in plants simultaneously irrigated with tannery wastewater.


Sign in / Sign up

Export Citation Format

Share Document