scholarly journals Sustainable Use Of Macro-Algae For Biogas Production In Latvian Conditions: A Preliminary Study Through An Integrated Mca And Lca Approach

2014 ◽  
Vol 13 (1) ◽  
pp. 44-56 ◽  
Author(s):  
Laura Pastare ◽  
Francesco Romagnoli ◽  
Dace Lauka ◽  
Ilze Dzene ◽  
Tatjana Kuznecova

Abstract The study focuses on sustainability evaluation of an algae-based energy system in Latvia with a holistic and integrated approach of multi-criteria analysis combined with life cycle assessment (including a practical side - biogas yield experiments of locally available algae). The study shows potential for sustainable use of algae in Latvian conditions and thus that algal biomass can be utilized for the production of biogas. The most sustainable and feasible scenario of using algae for biogas energy production foresees the collection of algae biomass from natural water bodies. Important beneficial effects through the use of algae are related to avoiding global warming potential (GWP) and eutrophication impacts. Biogas batch experiments carried out with the local macrophyte C.demersum have shown a methane yield of 554 l CH4/kg VS.

Author(s):  
Jialin Chen ◽  
Ruijiang Yang ◽  
Da Xu ◽  
Bin Zhou ◽  
Yifang Jin

AbstractLow biogas yield in cold climates has brought great challenges in terms of the flexibility and resilience of biogas energy systems. This paper proposes a maximum production point tracking method for a solar-boosted biogas generation system to enhance the biogas production rate in extreme climates. In the proposed method, a multi-dimensional R–C thermal circuit model is formulated to analyze the digesting thermodynamic effect of the anaerobic digester with solar energy injection, while a hydrodynamic model is formulated to express the fluid dynamic interaction between the hot-water circulation flow and solar energy injection. This comprehensive dynamic model can provide an essential basis for controlling the solar energy for digester heating to optimize anaerobic fermentation and biogas production efficiency in extreme climates. A model predictive control method is developed to accurately track the maximum biogas production rate in varying ambient climate conditions. Comparative results demonstrate that the proposed methodology can effectively control the fermentation temperature and biogas yield in extreme climates, and confirm its capability to enhance the flexibility and resilience of the solar-boosted biogas generation system.


Author(s):  
Maria Maddalena Tortorella ◽  
Senatro Di Leo ◽  
Carmelina Cosmi ◽  
Patrícia Fortes ◽  
Mauro Viccaro ◽  
...  

The European Union’s 2030 climate and energy policy and the 2030 Agenda for Sustainable Development underline the commitment to mitigate climate change and reduce its impacts by supporting sustainable use of resources. This commitment has become stricter in light of the ambitious climate neutrality target set by the European Green Deal for 2050. Water, Energy and Food are the key variables of the “Nexus Thinking” which face the sustainability challenge with a multi-sectoral approach. The aim of the paper is to show the methodological path toward the implementation of an integrated modeling platform based on the Nexus approach and consolidated energy system analysis methods to represent the agri-food system in a circular economy perspective (from the use of water, energy, biomass, and land to food production). The final aim is to support decision-making connected to climate change mitigation. The IEA-The Integrated MARKAL-EFOM System (TIMES) model generator was used to build up the Basilicata Water, Energy and Food model (TIMES-WEF model), which allows users a comprehensive evaluation of the impacts of climate change on the Basilicata agri-food system in terms of land use, yields and water availability and a critical comparison of these indicators in different scenarios. The paper focuses on the construction of the model’s Reference Energy and Material System of the TIMES model, which integrates water and agricultural commodities into the energy framework, and on the results obtained through the calibration of the model β version to statistical data on agricultural activities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Grace N. Ijoma ◽  
Rosina Nkuna ◽  
Asheal Mutungwazi ◽  
Charles Rashama ◽  
Tonderayi S. Matambo

AbstractAn estimated 25 million tons of animal manure is produced globally every year, causing considerable impact to the environment. These impacts can be managed through the use of anaerobic digestion (AD) This process achieves waste degradation through enzymatic activity, the efficiency of the AD process is directly related to microorganisms that produce these enzymes. Biomethane potential (BMP) assays remain the standard theoretical framework to pre-determine biogas yield and have been used to determine the feasibility of substrates or their combination for biogas production. However, an integrated approach that combines substrate choice and co-digestion would provide an improvement to the current predictive models. PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) addresses the limitations of assays in this regard. In this paper, the biochemical functions of horse, cow, and pig manures are predicted. A total of 135 predicted KEGG Orthologies (KOs) showed amino acids, carbohydrate, energy, lipid, and xenobiotic metabolisms in all the samples. Linear discriminant analysis (LDA) combined with the effect size measurements (LEfSe), showed that fructose, mannose, amino acid and nucleotide sugar, phosphotransferase (PST) as well as starch and sucrose metabolisms were significantly higher in horse manure samples. 36 of the KOs were related to the acidogenesis and/or acetogenesis AD stages. Extended bar plots showed that 11 significant predictions were observed for horse-cow, while 5 were predicted for horse-pig and for cow-pig manures. Based on these predictions, the AD process can be enhanced through co-digestion strategies that takes into account the predicted metabolic contributions of the manure samples. The results supported the BMP calculations for the samples in this study. Biogas yields can be improved if this combined approach is employed in routine analysis before co-digesting different substrates.


Metabolites ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Irina A. Mednova ◽  
Alexander A. Chernonosov ◽  
Marat F. Kasakin ◽  
Elena G. Kornetova ◽  
Arkadiy V. Semke ◽  
...  

Amino acids and acylcarnitines play an important role as substrates and intermediate products in most of pathways involved in schizophrenia development such as mitochondrial dysfunction, inflammation, lipid oxidation, DNA damage, oxidative stress, and apoptosis. It seems relevant to use an integrated approach with ‘omics’ technology to study their contribution. The aim of our study was to investigate serum amino acid and acylcarnitine levels in antipsychotics-treated patients with chronic schizophrenia compared with healthy donors. We measured serum levels of 15 amino acids and 30 acylcarnitines in 37 patients with schizophrenia and 36 healthy donors by means of tandem mass spectrometry. In summary, patients with chronic schizophrenia had an altered concentration of a few amino acids and acylcarnitines in comparison to the healthy probands. Further research is needed to assess and understand the identified changes.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2742
Author(s):  
Raquel Iglesias ◽  
Raúl Muñoz ◽  
María Polanco ◽  
Israel Díaz ◽  
Ana Susmozas ◽  
...  

The present work reviews the role of biogas as advanced biofuel in the renewable energy system, summarizing the main raw materials used for biogas production and the most common technologies for biogas upgrading and delving into emerging biological methanation processes. In addition, it provides a description of current European legislative framework and the potential biomethane business models as well as the main biogas production issues to be addressed to fully deploy these upgrading technologies. Biomethane could be competitive due to negative or zero waste feedstock prices, and competitive to fossil fuels in the transport sector and power generation if upgrading technologies become cheaper and environmentally sustainable.


2021 ◽  
Vol 13 (13) ◽  
pp. 7182
Author(s):  
Emilio Abad-Segura ◽  
Ana Batlles-delaFuente ◽  
Mariana-Daniela González-Zamar ◽  
Luis Jesús Belmonte-Ureña

The joint application of bioeconomy (BE) and circular economy (CE) promotes the sustainable use of natural resources, since by applying a systemic approach, it improves the efficiency of these resources and reduces the impact on the environment. Both strategies, which belong to the area of green economy, provide a global and integrated approach towards environmental sustainability, as regards the extraction of biological materials, the protection of biodiversity and even the primary function of food production in agriculture. The objective was to analyze the implications for sustainability of BE and CE joint application. A systematic and bibliometric review has been applied to a sample of 1961 articles, selected from the period 2004–May 2021. A quantitative and qualitative advance is observed in this field of study. The expansion of scientific production is due to its multidisciplinary nature, since it implies technical, environmental and economic knowledge. The main contribution of this study is to understand the state of research on the implications for sustainability that BE and CE have when combined, in relation to their evolution, the scientific collaboration between the main driving agents, and the identification of the main lines of research developed.


Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1971
Author(s):  
Asad Sarwar Qureshi

The Gulf Cooperation Council (GCC) countries are located in the driest part of the world with an annual per capita water availability of 500 m3 compared to the world average of 6000 m3. Agricultural water demand, which is more than 80% of the total water consumption, is primarily met through the massive exploitation of groundwater. The enormous imbalance between groundwater discharge (27.8 billion m3) and recharge (5.3 billion m3) is causing the excessive lowering of groundwater levels. Therefore, GCC countries are investing heavily in the production of nonconventional water resources such as desalination of seawater and treated wastewater. Currently, 439 desalination plants are annually producing 5.75 billion m3 of desalinated water in the GCC countries. The annual wastewater collection is about 4.0 billion m3, of which 73% is treated with the help of 300 wastewater treatment plants. Despite extreme water poverty, only 39% of the treated wastewater is reused, and the remaining is discharged into the sea. The treated wastewater (TWW) is used for the landscape, forestry, and construction industries. However, its reuse to irrigate food and forage crops is restricted due to health, social, religious, and environmental concerns. Substantial research evidence exists that treated wastewater can safely be used to grow food and forage crops under the agroclimatic conditions of the GCC countries by adopting appropriate management measures. Therefore, GCC countries should work on increasing the use of TWW in the agriculture sector. Increased use of TWW in agriculture can significantly reduce the pressure on freshwater resources. For this purpose, a comprehensive awareness campaign needs to be initiated to address the social and religious concerns of farming communities and consumers. Several internal and external risks can jeopardize the sustainable use of treated wastewater in the GCC countries. These include climate change, increasing costs, technological and market-driven changes, and regional security issues. Therefore, effective response mechanisms should be developed to mitigate future risks and threats. For this purpose, an integrated approach involving all concerned local and regional stakeholders needs to be adopted.


2013 ◽  
Vol 295-298 ◽  
pp. 1735-1739
Author(s):  
Fu Bin Yin ◽  
Zi Fu Li ◽  
Shuang Hou ◽  
Xiao Feng Bai ◽  
Ting Ting Wang

The main objectives of this research were to determine the effect of leachate refluence on biogas production for dry mesophilic co-fermentation of chicken manure and corn straw. The biogas production, the ratio of biogas production, methane content and pH were analyzed. The results showed that the leachate refluence has a significant impact on biogas production of dry co-fermentation. The cumulative biogas yield of the once in 48h has an increase by 10% and 5% for no reflux and once in 24h, respectively. The leachate refluence has little influence on the methane content, but it has good effect to keep pH in the optimum rang.


2005 ◽  
Vol 3 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Luiz Claudio Di Stasi

An integrated and interdisciplinary research programme with native medicinal plants from tropical forests has been performed in order to obtain new forest products for sustainable use in regional markets vis-à-vis ecosystem conservation. For the success of this programme ethnopharmacological studies are very important with respect to (i) identification of useful plants including medicinal and aromatic species; (ii) recuperation and preservation of traditional knowledge about native plants; and (iii) identification of potential plants with economic value. The plants are selected with a view to evaluate efficacy and safety (pharmacological and toxicological studies), and phytochemical profile and quality control (phytochemical and chromatographic characterization). These studies are very important to add value to plant products and also to mitigate unscrupulous exploitation of medicinal plants by local communities, since multiple use of plants represents an excellent strategy for sustaining the tropical ecosystem through ex situ and in situ conservation. Thus, conservation of tropical resources is possible in conjunction with improvements in the quality of life of the traditional communities and production of new products with therapeutic, cosmetic and ‘cosmeceutic’ value.


Sign in / Sign up

Export Citation Format

Share Document