Chemical traits and antimicrobial activity of endemic Teucrium arduini L. from Mt Biokovo (Croatia)

2012 ◽  
Vol 7 (5) ◽  
pp. 941-947 ◽  
Author(s):  
Dario Kremer ◽  
Ivna Müller ◽  
Valerija Dunkić ◽  
Dubravka Vitali ◽  
Edith Stabentheiner ◽  
...  

AbstractChemical composition of the essential oil (analysed by GC-FID and GC-MS), the content of macroelements and trace elements (analysed by ICP-AES), and antimicrobial activities were investigated in Teucrium arduini L. from Mt Biokovo (Croatia). Additionally, a study on the types and distribution of glandular trichomes which produce essential oils was investigated. The oil was characterized by a high concentration of sesquiterpene hydrocarbons (68.5%) of which β-caryophyllene (32.9%) and germacrene D (16.4%) being the major compounds. Among the macroelements, the content of calcium was the highest (9772 mg/kg), while the content of sodium was the smallest (117.74 mg/kg). Among the micronutrients, the most represented element was iron (72.07 mg/kg). The content of each investigated toxic metal (As, Hg, Pb, Cd and Cr) was below permissible levels. The essential oils showed antimicrobial activity against bacterial species tested, with MIC values ranging from 6.25 mg/mL to 37.50 mg/mL. Fungal species were susceptible with MIC values from 7.81 mg/mL and 25.00 mg/mL.

2020 ◽  
Vol 17 (7) ◽  
pp. 539-547
Author(s):  
Bilge Eren ◽  
Fadime Özdemir Koçak ◽  
Gülcan Erdoğan

A series of polybenzimidazole was synthesized by the solution polycondensation reaction of 3,3´-diaminobenzidine (DAB) with dicarboxylic acid derivatives. The synthesized polybenzimidazoles were characterized by using IR, 1H-NMR, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA and DSC studies showed that the polybenzimidazoles have good thermal stability and are generally amorphous in nature. Glass transition temperature (Tg) values were found to be in the range of 300-410°C. This is the first detailed study to investigate the antimicrobial activities of the polybenzimidazoles. The synthesized polybenzimidazoles have high antimicrobial activity compared to benzimidazole molecules. It was also found that they are more effective against bacterial species than fungal species. The polymers 2, 5, 6, 7, having -1,3-phenyl, vinyl, -1-OH-3,5-phenyl and 4,4´- oxybisphenyl rings, showed remarkable activity against tested bacterial species (MIC = 32-500 μg/mL). Among these polymers, the polymers 6 and 7 having additional electronegative moiety have the highest activity against tested bacterial species.


2020 ◽  
Vol 20 (29) ◽  
pp. 2681-2691
Author(s):  
Athina Geronikaki ◽  
Victor Kartsev ◽  
Phaedra Eleftheriou ◽  
Anthi Petrou ◽  
Jasmina Glamočlija ◽  
...  

Background: Although a great number of the targets of antimicrobial therapy have been achieved, it remains among the first fields of pharmaceutical research, mainly because of the development of resistant strains. Docking analysis may be an important tool in the research for the development of more effective agents against specific drug targets or multi-target agents 1-3. Methods: In the present study, based on docking analysis, ten tetrahydrothiazolo[2,3-a]isoindole derivatives were chosen for the evaluation of the antimicrobial activity. Results: All compounds showed antibacterial activity against eight Gram-positive and Gram-negative bacterial species being, in some cases, more potent than ampicillin and streptomycin against all species. The most sensitive bacteria appeared to be S. aureus and En. Cloacae, while M. flavus, E. coli and P. aeruginosa were the most resistant ones. The compounds were also tested for their antifungal activity against eight fungal species. All compounds exhibited good antifungal activity better than reference drugs bifonazole (1.4 – 41 folds) and ketoconazole (1.1 – 406 folds) against all fungal species. In order to elucidate the mechanism of action, docking studies on different antimicrobial targets were performed. Conclusion: According to docking analysis, the antifungal activity can be explained by the inhibition of the CYP51 enzyme for most compounds with a better correlation of the results obtained for the P.v.c. strain (linear regression between estimated binding Energy and log(1/MIC) with R 2 =0.867 and p=0.000091 or R 2 = 0.924, p= 0.000036, when compound 3 is excluded.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1406
Author(s):  
Rita Cava-Roda ◽  
Amaury Taboada-Rodríguez ◽  
Antonio López-Gómez ◽  
Ginés Benito Martínez-Hernández ◽  
Fulgencio Marín-Iniesta

Plant bioactive compounds have antimicrobial and antioxidant activities that allow them to be used as a substitute for synthetic chemical additives in both food and food packaging. To improve its sensory and bactericidal effects, its use in the form of effective combinations has emerged as an interesting possibility in the food industry. In this study, the antimicrobial activities of essential oils (EOs) of cinnamon bark, cinnamon leaves, and clove and the pure compounds vanillin, eugenol, and cinnamaldehyde were investigated individually and in combination against Listeria monocytogenes and Escherichia coli O157:H7. The possible interactions of combinations of pure compounds and EOs were performed by the two-dimensional checkerboard assay and isobologram methods. Vanillin exhibited the lowest antimicrobial activity (MIC of 3002 ppm against L. monocytogenes and 2795 ppm against E. coli O157:H7), while clove and cinnamon bark EOs exhibited the highest antimicrobial activity (402–404 against L. monocytogenes and 778–721 against E. coli O157:H7). For L. monocytogenes, pure compound eugenol, the main component of cinnamon leaves and clove, showed lower antimicrobial activity than EOs, which was attributed to the influence of the minor components of the EOs. The same was observed with cinnamaldehyde, the main component of cinnamon bark EO. The combinations of vanillin/clove EO and vanillin/cinnamon bark EO showed the most synergistic antimicrobial effect. The combination of the EOs of cinnamon bark/clove and cinnamon bark/cinnamon leaves showed additive effect against L. monocytogenes but indifferent effect against E. coli O157:H7. For L. monocytogenes, the best inhibitory effects were achieved by cinnamon bark EO (85 ppm)/vanillin (910 ppm) and clove EO (121 ppm)/vanillin (691 ppm) combinations. For E. coli, the inhibitory effects of clove EO (104 ppm)/vanillin (1006 ppm) and cinnamon leaves EO (118 ppm)/vanillin (979 ppm) combinations were noteworthy. Some of the tested combinations increased the antimicrobial effect and would allow the effective doses to be reduced, thereby offering possible new applications for food and active food packaging.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3170
Author(s):  
Wafaa M. Elkady ◽  
Mariam H. Gonaid ◽  
Miriam F. Yousif ◽  
Mahmoud El-Sayed ◽  
Hind A. N. Omar

Active components from natural sources are the current focus in most pharmacological research to provide new therapeutic agents for clinical use. Essential oils from the Pinus species have been traditionally used in medicine. This study aimed to investigate the chemical profile of two Pinus species, Pinus halepensis L. and Pinus pinea Mill, from different altitudes in Libya and study the effect of environmental conditions on the biological activities of essential oils. A clevenger apparatus was used to prepare the essential oils by hydrodistillation. Analyses were done using GC/MS. Anthelmintic and antimicrobial activities were tested against the earthworm Allolobophora caliginosa, gram-positive bacteria, gram-negative bacteria, and fungi. Different chemical profiles were observed among all tested essential oils, and terpenes were the most dominant class. All studied essential oils from the Pinus species exhibited a remarkable anthelmintic activity compared to the standard piperazine citrate drug. Pinus halepensis from both altitudes showed broad-spectrum antimicrobial activity against all tested microorganisms, while Pinus pinea was effective against only Escherichia coli. From these findings, one can conclude that there are variations between studied species. The essential oil compositions are affected by environmental factors, which consequently affect the anthelmintic and antimicrobial activity.


2013 ◽  
pp. 171-183 ◽  
Author(s):  
Emilija Ivanova ◽  
Natalija Atanasova-Pancevska ◽  
Dzoko Kungulovski

It is well known that essential oils possess significant antimicrobial activity. This study was conducted to estimate the antimicrobial activity of various types of Biokill, a laboratory produced solution composed of several essential oils (Biokill dissolved in 96% ethanol; Biokill 96% further dissolved in DMSO; Biokill dissolved in 70% ethanol and Biokill 70% further dissolved in DMSO). The antimicrobial activity was evaluated against five selected fungal strains, Candida albicans ATCC 10231, Saccharomyces cerevisiae ATCC 9763, Aspergillus niger I.N. 1110, Aspergillus sojae CCF and Penicillium spp. FNS FCC 266. A variation of the microtiter plate-based antimicrobial assay was used in order to assess the antimicrobial activity of the solutions. By applying this assay minimal inhibitory concentrations (MIC) of the Biokill solutions were determined for each strain of the selected test microorganisms. The results demonstrated that all variations of Biokill showed antimicrobial activity at concentrations lower than 2.5?g/mL. Biokill 70% further dissolved in DMSO showed the best antimicrobial properties against all the selected strains with MICs less than 1.25?g/mL. These results indicated that Biokill could find application in the pharmaceutical industry, in food preservation and conservation, in the prevention and treat?ment of plants infected by certain phytopathogens, etc.


Author(s):  
Samina Amin Qurban Ali ◽  
Arif Malik

The increasing rate of drug-repellent pathogens and poisonousness of existing antiseptic compounds has strained attention toward activity of antimicrobial products which are natural. Main purpose of this research was to assess antimicrobial activity of seeds and leaves of Coriandrum sativum’s essential oil, antioxidant, antimicrobial activity and chemical composition of Coriandrum sativum’s ethanol extracts and essential oils. Numerous approaches were used in reviewing the antioxidant activity such as, p-anisidine test – malonaldhyde, DPPH and peroxide value. Antimicrobial activity of the extracts towards six microbial strains; two bacterial strains (Salmonella typhi and Staphylococcus aureus), one yeast (Candida tropicals) and three fungal strains (Aspergillus flavus, Mucor sp and Emericella nidulans) was assessed by determination of inhibition zone and count of bacteria, yeast and spares of fungus. The antimicrobial mechanisms found in these essential oils have been explained on the basis of their content in natural compounds such as carvacrol, thymol, p-cymene and c-terpinene, among others. Although these two essential oils have received much attention, scientists working in the fields of biomedicine and food science are paying increasing attention to a wider variety of aromatic natural oils in an effort to identify original and natural applications for the inhibition of microbial pathogens. In conclusion, utilization of coriander or their components as food additives will increase the antioxidant and the antimicrobial potential of the food which prevent food deterioration and improve the shelf-life of food beside its nutritional value. The results revealed that the leaves extracts have high levels of phenolics than the seeds extract. Concerning antioxidant activity, significant decreases (p>0.001) were observed in peroxide, P- anisidine and TBA values as compared to control oil. On the other hand, scavenging activity % of the four extracts on DPPH radical were higher than that of butylated hydroxyl toluene (BHT) especially with high concentration (1000 μg/ ml). Regarding antimicrobial activity, the results showed that the extract of coriander seeds has the highest reduction percent in growth of all the examined microorganisms. The result also revealed that Mucor sp was resistant to the action of parsley extracts while Aspergillus flavus has the highest resistance against coriander extracts.


2020 ◽  
Vol 18 (1) ◽  
pp. 72-78 ◽  
Author(s):  
Fatima Benyoucef ◽  
Mohammed El Amine Dib ◽  
Boufeldja Tabti ◽  
Arrar Zoheir ◽  
Jean Costa ◽  
...  

Background: Antibiotic resistance is today one of the most serious threats to global health, food security and development. Due to the growing number of infections, treatment becomes more difficult, if not impossible, because of the loss of antibiotic efficacy. Objective: In the present investigation, the chemical composition of essential oils of Ammoides verticillata and Satureja candidissima and their synergistic effects on antimicrobial activities were investigated. Methods: The chemical composition of the essential oil was analyzed by Gas Chromatography (GC) and Gas Chromatography-Mass Spectroscopy (GC/MS). The antimicrobial activity of the essential oils was investigated using dilution-agar method against nine bacterial strains three Gram-negative Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853) and Salmonella typhi (ATCC 14028), and six Gram-positive: Staphylococcus aureus (ATCC 43300,) Clostridium sporogenes (ATCC 19404), Bacillus subtilis (ATCC 6633), Enterococcus faecalis (ATCC 7314), Lactobacillus rhamnosus (ATCC 53103) and Bacillus cereus (ATCC 14579). Results: The essential oil of A. verticillata was characterized principally by carvacrol (44,3%), Limonene (19,3%) and p-cymene (19,2%). The constituents identified of S. candidissima essential oil were principally oxygenated monoterpenes represented by pulegone (70,4%). The essential oil of A. verticillata had a good antimicrobial activity against four bacterial strains (Escherichia coli, Salmonella typhi, Lactobacillus rhamnosus and Bacillus cereus) with MIC and MBC values between 0.2-0.4 µl/ml and 0.2-6.2 µl/ml, respectively. While, S. candidissima essential oil had moderate antimicrobial activities against all strains with MIC and MBC values between 1.5-6.2 µl/ml and 6.2-12.5 µl/ml, respectively. The results of antimicrobial activity of essential oils blend presented higher antimicrobial activity against all tested bacteria with MIC and MBC values between 0.3-1.5 µl/ml and 0.4-6.2 µl/ml, respectively. Conclusion: The essential oils blend presented high antimicrobial activity compared to virgin oils. This activity can be due to the association of active compounds such as carvacrol and pulegone. These findings provide a new source of drugs that may help in therapy to lead to the development of a new treatment based on a combination of these essential oils against gram-negative and gram-positive bacteria that continue to pose a threat to public health.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1646
Author(s):  
Marija Nazlić ◽  
Dario Kremer ◽  
Renata Jurišić Grubešić ◽  
Barbara Soldo ◽  
Elma Vuko ◽  
...  

Chemical profile and antioxidant activity of the species Veronica saturejoides Vis. ssp. saturejoides (Plantaginaceae)—which is endemic to Croatia, Bosnia and Herzegovina and Montenegro —were investigated. Volatile compounds produced by glandular trichomes (composed of one stalk cell and two elliptically formed head cells according to scanning electron microscope investigation) were isolated from the plants collected in two locations. Additionally, as a part of specialized metabolites, total polyphenols, total tannins, total flavonoids and total phenolic acids were determined spectrophotometrically. In the lipophilic volatile fractions-essential oils, the most abundant compounds identified were hexahydrofarnesyl acetone, caryophyllene oxide and hexadecanoic acid. In total, the class of oxygenated sesquiterpenes and the group of fatty aldehydes, acids and alcoholic compounds dominated in the essential oils. In the hydrophilic volatile fractions-hydrosols, the most abundant compounds identified were trans-p-mentha-1(7),8-dien-2-ol, allo-aromadendrene and (E)-caryophyllene. A group of oxygenated monoterpenes and the sesquiterpene hydrocarbons dominated in the hydrosols. Antioxidant activity of essential oils and hydrosols was tested with two methods: 2,2′-diphenyl-1-picrylhydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC). Essential oils showed higher antioxidant activity than hydrosols and showed similar antioxidant activity to Rosmarinus officinalis essential oil. Obtained results demonstrate that this genus is a potential source of volatiles with antioxidant activity.


2014 ◽  
Vol 9 (12) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Wan Mohd Nuzul Hakimi Wan Salleh ◽  
Farediah Ahmad ◽  
Khong Heng Yen

The study was designed to examine the chemical composition and antimicrobial activities of essential oils extracted from the aerial parts of three Piper species: Piper abbreviatum, P. erecticaule and P. lanatum, all from Malaysia. GC and GC/MS analysis showed qualitative and quantitative differences between these oils. GC and GC-MS analysis of P. abbreviatum, P. erecticaule and P. lanatum oils resulted in the identification of 33, 35 and 39 components, representing 70.5%, 63.4% and 78.2% of the components, respectively. The major components of P. abbreviatum oil were spathulenol (11.2%), ( E)-nerolidol (8.5%) and β-caryophyllene (7.8%), whereas P. erecticaule oil mainly contained β-caryophyllene (5.7%) and spathulenol (5.1%). Borneol (7.5%), β-caryophyllene (6.6%) and α-amorphene (5.6%) were the most abundant components in P. lanatum oil. Antimicrobial activity was carried out using disc diffusion and broth micro-dilution method against nine microorganisms. All of the essential oils displayed weak activity towards Gram-positive bacteria with MIC values in the range 250–500 μg/mL. P. erecticaule oil showed the best activity on Aspergillus niger (MIC 31.3 μg/mL), followed by P. lanatum oil (MIC 62.5 μg/mL). This study demonstrated that the essential oils have potential as antimicrobial agents and may be useful in the pharmaceutical and cosmetics industries.


2016 ◽  
Vol 11 (10) ◽  
pp. 1934578X1601101 ◽  
Author(s):  
Nurettin Yaylι ◽  
Gonca Tosun ◽  
Büşra Yaylι ◽  
Zeynep Gündoğanc ◽  
Kamil Coşkunçelebic ◽  
...  

In this study, the changes caused by variation of altitude to the essential oils (EOs), fatty acid methyl esters (FAMEs), and antimicrobial activities of Primula vulgaris Huds. subsp. vulgaris ( Pvv) and P. vulgaris Huds. subsp. sibthorpii (Hoffmanns) W.W. Sm. & Forrest ( Pvs)) grown in Turkey were investigated. Major fluctuations in the composition of Pvv and Pvs oils included methyl-4-methoxy salicylate (4.5–35.3%; Pvv and 3.2–37.2%; Pvs), ( Z,Z,Z)-7,10,13-hexadecatrienal (5.1–21.8%; Pvv and 4.4–15.2%; Pvs) and flavone (5.5–14.9%; Pvv and 1.6–18.0%; Pvs). Fatty acid profile (C6:0–C26:0) changes were noted in Pvv and Pvs. Methyl hexadecanoate (2.4–9.3%) and methyl octadecanoate (1.0–4.7%) were present in all the FAME samples of the plants. The antimicrobial activity of the EOs of Pvv and Pvs were tested against nine bacterial species, which showed activity against Mycobacterium smegmatis with minimum inhibitory concentrations (MIC) varying from 8.5 to 59.2 μg/mL in all samples, respectively, depending on the altitude at which the oils were obtained.


Sign in / Sign up

Export Citation Format

Share Document