scholarly journals Contact interactions between soil and a corrugated metal sheet in soil-shell structures under construction

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Czesław Machelski

Abstract During the construction of soil-shell objects, large deformations of the shell, which is made of corrugated metal sheet, occur. This enables geodetic techniques to be used when monitoring such objects. On this basis, displacements of selected points of the shell are determined, and it is then possible to obtain bending moments, as shown in this paper. Based on measurements using strain gauges in the circumferential band of the shell, internal forces in steel are estimated. The algorithm given in the paper enables the impact of soil on the shell in the examined objects to be analysed. The proposed method of analysing forces in the contact layer becomes especially useful when the static conditions of the model of a shell, which is considered as a bar submerged unilaterally in the soil medium, are met. The paper indicates the possibility of using both measuring techniques. Calculations include a smaller share of axial forces on the contact impact during the laying phase of the backfill. The paper provides examples of the analysis of built shells and record-breaking objects, with an assessment of the effectiveness of the proposed algorithm. Good mapping of contact forces, which were calculated on the basis of bending moments, was indicated even when there was not a dense grid of measuring points. An important advantage of the algorithm involves reduction of the circumferential band that is separated from the soil-shell system to the bar, which is an element resulting from the division of the structure into subsystems.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Czesław Machelski

AbstractThe algorithm presented in this paper is intended for the analysis of deformations of shells in the construction phase of soil-shell objects when strain gauges and geodetic measurements are used. During the construction of such an object, large displacement values occur and the impact of axial forces on the displacement of a corrugated metal sheet is small. Internal forces (strain gauges), as well as the displacements of a selected circumferential band of the shell are determined directly from such observations.The paper presents two examples of the analysis of large span shell structures of constructed objects, as well as the assessment of the effectiveness of the finite difference method (FDM) in beam schemes. Good deformation mapping was indicated using the collocation algorithm and the differential approach to the solution when there is a dense mesh and regular distribution of measuring points. In the analysed examples, a significant divergence between the support conditions adopted in the FEM calculation models and the actual static conditions in the objects was indicated. The collocation algorithm is especially designed for such situations. Collocation points in such a solution are used to consider a beam – separated from a structure and without boundary constraints, but with specific changes in curvature – as a reference system, which is determined from the geodetic measurements of two collocation points.


2008 ◽  
Vol 36 (3) ◽  
pp. 211-226 ◽  
Author(s):  
F. Liu ◽  
M. P. F. Sutcliffe ◽  
W. R. Graham

Abstract In an effort to understand the dynamic hub forces on road vehicles, an advanced free-rolling tire-model is being developed in which the tread blocks and tire belt are modeled separately. This paper presents the interim results for the tread block modeling. The finite element code ABAQUS/Explicit is used to predict the contact forces on the tread blocks based on a linear viscoelastic material model. Special attention is paid to investigating the forces on the tread blocks during the impact and release motions. A pressure and slip-rate-dependent frictional law is applied in the analysis. A simplified numerical model is also proposed where the tread blocks are discretized into linear viscoelastic spring elements. The results from both models are validated via experiments in a high-speed rolling test rig and found to be in good agreement.


Author(s):  
Kerstin Jurk ◽  
Katharina Neubauer ◽  
Victoria Petermann ◽  
Elena Kumm ◽  
Barbara Zieger

AbstractSeptins (Septs) are a widely expressed protein family of 13 mammalian members, recognized as a unique component of the cytoskeleton. In human platelets, we previously described that SEPT4 and SEPT8 are localized surrounding α-granules and move to the platelet surface after activation, indicating a possible role in platelet physiology. In this study, we investigated the impact of Sept8 on platelet function in vitro using Sept8-deficient mouse platelets. Deletion of Sept8 in mouse platelets caused a pronounced defect in activation of the fibrinogen receptor integrin αIIbβ3, α-granule exocytosis, and aggregation, especially in response to the glycoprotein VI agonist convulxin. In contrast, δ-granule and lysosome exocytosis of Sept8-deficient platelets was comparable to wild-type platelets. Sept8-deficient platelet binding to immobilized fibrinogen under static conditions was diminished and spreading delayed. The procoagulant activity of Sept8-deficient platelets was reduced in response to convulxin as determined by lactadherin binding. Also thrombin generation was decreased relative to controls. Thus, Sept8 is required for efficient integrin αIIbβ3 activation, α-granule release, platelet aggregation, and contributes to platelet-dependent thrombin generation. These results revealed Sept8 as a modulator of distinct platelet functions involved in primary and secondary hemostatic processes.


2021 ◽  
Vol 11 (7) ◽  
pp. 2919
Author(s):  
Massamba Fall ◽  
Zhengguo Gao ◽  
Becaye Cissokho Ndiaye

A pile foundation is commonly adopted for transferring superstructure loads into the ground in weaker soil. They diminish the settlement of the infrastructure and augment the soil-bearing capacity. This paper emphases the pile-driving effect on an existing adjacent cylindrical and semi-tapered pile. Driving a three-dimensional pile into the ground is fruitfully accomplished by combining the arbitrary Lagrangian–Eulerian (ALE) adaptive mesh and element deletion methods without adopting any assumptions that would simplify the simulation. Axial forces, bending moment, and lateral displacement were studied in the neighboring already-installed pile. An investigation was made into some factors affecting the forces and bending moment, such as pile spacing and the shape of the already-installed pile (cylindrical, tapered, or semi-tapered). An important response was observed in the impact of the driven pile on the nearby existing one, the bending moment and axial forces were not negligible, and when the pile was loaded, it was recommended to consider the coupling effect. Moreover, the adjacent semi-tapered pile was subjected to less axial and lateral movement than the cylindrical one with the same length and volume for taper angles smaller than 1.0°, and vice versa for taper angles greater than 1.4°.


2021 ◽  
Vol 11 (2) ◽  
pp. 466
Author(s):  
Włodzimierz Kęska ◽  
Jacek Marcinkiewicz ◽  
Łukasz Gierz ◽  
Żaneta Staszak ◽  
Jarosław Selech ◽  
...  

The continuous development of computer technology has made it applicable in many scientific fields, including research into a wide range of processes in agricultural machines. It allows the simulation of very complex physical phenomena, including grain motion. A recently discovered discrete element method (DEM) is used for this purpose. It involves direct integration of equations of grain system motion under the action of various forces, the most important of which are contact forces. The method’s accuracy depends mainly on precisely developed mathematical models of contacts. The creation of such models requires empirical validation, an experiment that investigates the course of contact forces at the moment of the impact of the grains. To achieve this, specialised test stations equipped with force and speed sensors were developed. The correct selection of testing equipment and interpretation of results play a decisive role in this type of research. This paper focuses on the evaluation of the force sensor dynamic properties’ influence on the measurement accuracy of the course of the plant grain impact forces against a stiff surface. The issue was examined using the computer simulation method. A proprietary computer software with the main calculation module and data input procedures, which presents results in a graphic form, was used for calculations. From the simulation, graphs of the contact force and force signal from the sensor were obtained. This helped to clearly indicate the essence of the correct selection of parameters used in the tests of sensors, which should be characterised by high resonance frequency.


Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.


2014 ◽  
Vol 580-583 ◽  
pp. 238-242
Author(s):  
Ri Cheng Liu ◽  
Bang Shu Xu ◽  
Bo Li ◽  
Yu Jing Jiang

Mechanical behaviors of pile-soil effect and anchor-soil effect are significantly important in supporting engineering activities of foundation pit. In this paper, finite difference method (FDM) was utilized to perform the numerical simulation of pile-anchor system, composed of supporting piles and pre-stressed anchor cables. Numerical simulations were on the basis of the foundation pit of Jinan’s West Railway Station, and 3D simulation analysis of foundation pit has been prepared during the whole processes of excavation, supporting and construction. The paper also analyzed the changes of bending moments of piles and axial forces of cables, and discussed mechanical behaviors of pile-anchor system, through comparisons with field monitoring. The results show that the parameters concluding vertical gridding’s number, cohesion of pile and soil, and pile stiffness have robust influences on supporting elements’ behaviors. Mechanical behaviors of supporting pile and axial forces of anchor cable changed dramatically, indicating that the potential failure form was converted from toppling failure to sliding failure.


2014 ◽  
Vol 626 ◽  
pp. 109-114
Author(s):  
Wen Su Chen ◽  
Hong Hao ◽  
Hao Du

Hurricane, typhoon and cyclone take place more and more often around the world with changing climate. Such nature disasters cause tremendous economic loss and casualty. Various kinds of windborne debris such as compact-like, plate-like and rod-like objects driven by hurricane usually imposes localized impact loading on the structure envelopes such as cladding, wall or roof, etc. The dominant opening in the envelope might cause serious damage to the structures, even collapse. To withstand the impact of such extreme event, the requirements on panel capacity to resist windborne debris impact has been presented in the Australian Wind Loading Code (2011) [1]. Corrugated metal panels are widely used as building envelop. In a previous study, laboratory tests have been carried out to investigate the performance of corrugated metal panels subjected to a 4kg wooden projectile by considering various impact locations, impact velocities and boundary conditions. In this study, numerical models were developed to simulate the responses of the corrugated metal panels subjected to wooden debris impacts by using commercial software LS-DYNA. The predicted data from the numerical simulations were compared with the experimental results. The validated numerical model can be used to conduct intensive numerical simulation to study the failure probabilities of corrugated structural panels subjected to windborne debris impacts.


2021 ◽  
Vol 80 (13) ◽  
Author(s):  
Grzegorz Przydatek ◽  
Włodzimierz Kanownik

AbstractThe paper aims to determine the most significant physicochemical indicators of the effects that a lined landfill in southern Poland has had on groundwater quality. The results of the tests of groundwater and leachate water from the landfill for the period 2009 to 2016 were subjected to a detailed statistical analysis based on the 10 physicochemical parameters. A factor analysis was conducted considering the European Union and national requirements for landfills using analytical and statistical tools. The leachate contamination indicators from a landfill were analysed to reveal their interaction with the groundwater. The assessment indicated that there was an elevated and statistically significantly higher electrical conductivity and copper and total organic carbon concentrations in groundwater hydraulically downgradient of the landfill. The assessment also indicated that there were significant differences in the correlations between chemical parameters downgradient of the landfill and that there was a trend of increasing concentrations of some chemical constituents in groundwater. The adverse effects of the landfill were due to the deposited amount of waste exceeding 10 Mg per day. The impact was noticeable despite low and decreasing concentrations of heavy metals (Hg, Cu, Cd, Pb and Zn) in the leachate. The deterioration of the chemical state of the groundwater in the landfill vicinity could result in the extended time of pollutant migration or mass transport in the irrigated soil medium due to the limited efficiency of the leachate intake system or sealing screen after more than 20 years of landfill operation.


2021 ◽  
Author(s):  
Domenico Tommasino ◽  
Matteo Bottin ◽  
Giulio Cipriani ◽  
Alberto Doria ◽  
Giulio Rosati

Abstract In robotics the risk of collisions is present both in industrial applications and in remote handling. If a collision occurs, the impact may damage both the robot and external equipment, which may result in successive imprecise robot tasks or line stops, reducing robot efficiency. As a result, appropriate collision avoidance algorithms should be used or, if it is not possible, the robot must be able to react to impacts reducing the contact forces. For this purpose, this paper focuses on the development of a special end-effector that can withstand impacts and is able to protect the robot from impulsive forces. The novel end-effector is based on a bi-stable mechanism that decouples the dynamics of the end-effector from the dynamics of the robot. The intrinsically non-linear behavior of the end-effector is investigated with the aid of numerical simulations. The effect of design parameters and the operating conditions are analyzed and the interaction between the functioning of the bi-stable mechanism and the control system is studied. In particular, the effect of the mechanism in different scenarios characterized by different robot velocities is shown. Results of numerical simulations assess the validity of the proposed end-effector, which can lead to large reductions in impact forces.


Sign in / Sign up

Export Citation Format

Share Document