scholarly journals Modification of Alkyd with Epoxy and its Application for Paint Part 1: Epoxy Alkyd Ester Manufacturing and some Properties of Paint made from this Ester

Author(s):  
Nguyen Trung Thanh

The article introduces the modification of alkyd resin by epoxy resin to make epoxy alkyd ester. The study investigated the effects of reflux xylene content, the proportion of the constituents participating in the esterification reaction on the reaction processing and acidity index of the product. The infrared (IR) spectroscopy results confirmed the formation of ester bonds after the reaction. The paper also studied the mechanical properties of paint film based on the synthesized ester epoxy alkyd and compared them with the alkyd paint, the results showed that impact resistance and hardness of the study sample were higher than those of the alkyd paint sample. In addition, investigation, comparison of thermal stability of alkyd paint and epoxy alkyd paint film were also mentioned. Keywords: Epoxy alkyd esters, mechanical properties, thermal endurance, drying time.

Author(s):  
Nguyen Trung Thanh

The article presents results of studying and manufacturing environmentally friendly alkyd paint. By producing a polysaccharide intermediate emulsion (LPR), about 20% of water to total paint volume was added. Mechanical properties (impact resistance, flexural strength, adhesion) of paint films were studied. In addition, the paper presents results of thermal stability, 10-cycle UV-thermo-humidity complex stability of paint film. Ability of films to withstand 03-cycle heat shocking of films at temperatures of + 50 oC and -50 oC was investigated. The properties of studying paint were compared with those of an alkyd paint of Hanoi Synthetic Paint Company. Results show that the environmentally friendly alkyd paint has less volatile organic compounds (VOC), uses a smaller amount of toxic solvents, while its properties are comparable to common alkyd paint.


2019 ◽  
pp. 089270571989090 ◽  
Author(s):  
Hezhi He ◽  
Bida Liu ◽  
Bin Xue ◽  
He Zhang

Biodegradable polymer blends were prepared by melt blending poly(lactic acid) (PLA), poly(butylene adipate- co-terephthalate) (PBAT), and organic-modified montmorillonite (MMT). The effects of MMT on the structure, morphology, thermal, and mechanical properties of the blends were thoroughly investigated. The results revealed that MMT was preferable to localize on the interface of PLA and PBAT and esterification reaction took place between organic-modified MMT and PLA/PBAT. MMT enhanced the compatibility of PLA and PBAT, accelerated crystallization, and improved the thermal stability of PLA and PBAT. In addition, MMT illustrated the reinforcing effects on PLA and PBAT in their tensile strength, especially for PBAT.


2013 ◽  
Vol 275-277 ◽  
pp. 1921-1924
Author(s):  
Jin Feng Cui ◽  
Bi Bi Chen ◽  
Jun Hong Guo ◽  
Ying Ping Zhou ◽  
Bao Ping Yang

Bromine carbon alkyd resin was synthesized with soya oil acid, pentaerythritol, phthalic anhydride and brominated epoxy resin as materials under the condition which reaction temperature for 200 °C, usage of catalyst was 0.1% and period of esterification reaction lasted 3 h. And then bromine carbon alkyd resin retardant coatings for steel structure was prepared using bromine carbon alkyd resin as binder which compounded with flame retardant additives through stirred, grinded and dispersed homogeneously. Resin and coatings were analyzed by infrared spectroscopy and TG-DSC. The optimal formula of bromine carbon alkyd resin retardant coatings for steel structure was achieved through testing impact resistance, adhesive force, hardness, gloss, drying time and fire resistance time of film.


2011 ◽  
Vol 12 (2) ◽  
pp. 131-144 ◽  
Author(s):  
Yusof Yusliza ◽  
Ahmad Zuraida

ABSTRACT : The effect of fiber content on mechanical properties and thermal stability of the cotton/albumen composites (CAC) were investigated and presented in this paper. The composites having 0%, 3%, 6%, 10%, 13 %, and 16% w/w of cotton fiber were considered.  Hands lay-up technique was used to prepare the CAC specimens and dried for 24 hours before characterised and evaluated for their mechanical performance. The structure and thermal stability of the composites were characterized by using x-ray and thermogravimetry analysis, respectively. The tensile strength and impact resistance of CAC are found maximum with the value of 8.7 MPa and 19.0 kJ/m2, respectively. Analysis on the morphological structure by SEM revealed that the mechanical properties of the composites depend on good wettability and adhesion between fiber/matrix.


2016 ◽  
Vol 45 (1) ◽  
pp. 24-29 ◽  
Author(s):  
Alireza Khataee ◽  
Leila Moradkhannejhad ◽  
Vahid Heydari ◽  
Behrouz Vahid ◽  
Sang Woo Joo

Purpose – This paper aims to study the Improvements in self-cleaning property of the white acrylic water-based paint by addition of different percentages of three commercially available titanium dioxide (TiO2) nanoparticles as additives. Then, due to the risk of destruction of polymeric materials in the presence of nanoparticles, degradation of dry paint film samples was investigated for 15 days using two important chalking and yellowing factors. Finally, the TiO2-modified paint sample with the best performance and optimum percentage of TiO2 nanoparticles that produced desired self-cleaning and dry film properties was introduced. Design/methodology/approach – Self-cleaning and dry film properties of white acrylic water-based paint were investigated by addition of three various types of commercial available TiO2 nanoparticles (SSP-25, STA-100 and KA-100). X-ray diffraction, transmission electron microscopy and Brunauer–Emmett–Teller were used for characterization of TiO2 samples. Colorimetric tests in decolourization of C.I. Basic Red 46 (BR46) were used for determination of self-cleaning properties of TiO2-modified paints in comparison with unmodified paint sample. Also, paints defects such as chalking and yellowing were tested along two weeks. Findings – The results indicated that, in all types of TiO2 nanoparticles, by increasing the amount of TiO2 in modified paint, self-cleaning property of the samples was enhanced. The paint containing SSP-25 indicated better self-cleaning properties than others due to its larger surface area. However, its usage above 3.5 weight per cent caused yellowing and chalking defects in dried paint film. Practical implications – In this research, TiO2-modified paint sample with the best performance in both self-cleaning and mechanical properties was selected among the nine sets of prepared paint samples. All the materials used in this research such as acrylic resin and three types of TiO2 nanoparticles are of industrial grade. Therefore, the introduced TiO2-modified paint sample has the potential for the commercial production as a building exterior paint. Originality/value – In the present study, an attempt at introducing a self-cleaning paint sample with acceptable mechanical properties using three types of commercially available TiO2 nanoparticles as additives and industrial grade of acrylic resin which is the most commonly used water-based resin in building paints, as binder. As far as it was searched in the literatures, the parallel study of the self-cleaning and mechanical properties of paints has not been reported as noteworthy. Self-cleaning property of the acrylic water-based paint samples was investigated by adding three types of the commercially available TiO2 nanoparticles. Also considering the possible detrimental effects of TiO2 nanoparticles on polymeric materials and consequently on physical properties of the paint, chalking and yellowing factors in dried paint samples were evaluated.


2011 ◽  
Vol 66-68 ◽  
pp. 1902-1907 ◽  
Author(s):  
Yi Chen ◽  
Guang Sheng Zeng ◽  
Ping Jiang ◽  
Xiang Gang Li ◽  
Yu Gang Huang

PC/PLA composite material introduces the degradability of PLA to PC with great performance, but their compatibility and impact resistance are poor. Aiming at this deficiency, ABS is used to modify PC/PLA. This paper established the ternary compound system of PC/PLA/ABS by melt blending and studied the impact of adding ABS and compatibilizer ABS-g-MAH on the composite’s morphology, thermal properties, rheology and mechanical properties. The results showed that: ABS bettered the brittle fracture of PC/PLA and improved the impact strength of composite with the optimum proportion of 30% of PC/PLA mass. In addition, ABS-g-MAH effectively improved the compatibility of the composites as well as mechanical properties of materials. With the increase of ABS, the crystallization ability of PLA in the composite improved and the thermal stability of the system deteriorated slightly, the melt shear viscosity of composite also decreased.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3140
Author(s):  
Kamil Dydek ◽  
Anna Boczkowska ◽  
Rafał Kozera ◽  
Paweł Durałek ◽  
Łukasz Sarniak ◽  
...  

The main aim of this work was the investigation of the possibility of replacing the heavy metallic meshes applied onto the composite structure in airplanes for lightning strike protection with a thin film of Tuball single-wall carbon nanotubes in the form of ultra-light, conductive paper. The Tuball paper studied contained 75 wt% or 90 wt% of carbon nanotubes and was applied on the top of carbon fibre reinforced polymer before fabrication of flat panels. First, the electrical conductivity, impact resistance and thermo-mechanical properties of modified laminates were measured and compared with the reference values. Then, flat panels with selected Tuball paper, expanded copper foil and reference panels were fabricated for lightning strike tests. The effectiveness of lightning strike protection was evaluated by using the ultrasonic phased-array technique. It was found that the introduction of Tuball paper on the laminates surface improved both the surface and the volume electrical conductivity by 8800% and 300%, respectively. The impact resistance was tested in two directions, perpendicular and parallel to the carbon fibres, and the values increased by 9.8% and 44%, respectively. The dynamic thermo-mechanical analysis showed higher stiffness and a slight increase in glass transition temperature of the modified laminates. Ultrasonic investigation after lightning strike tests showed that the effectiveness of Tuball paper is comparable to expanded copper foil.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1502
Author(s):  
Eliezer Velásquez ◽  
Sebastián Espinoza ◽  
Ximena Valenzuela ◽  
Luan Garrido ◽  
María José Galotto ◽  
...  

The deterioration of the physical–mechanical properties and loss of the chemical safety of plastics after consumption are topics of concern for food packaging applications. Incorporating nanoclays is an alternative to improve the performance of recycled plastics. However, properties and overall migration from polymer/clay nanocomposites to food require to be evaluated case-by-case. This work aimed to investigate the effect of organic modifier types of clays on the structural, thermal and mechanical properties and the overall migration of nanocomposites based on 50/50 virgin and recycled post-consumer polypropylene blend (VPP/RPP) and organoclays for food packaging applications. The clay with the most hydrophobic organic modifier caused higher thermal stability of the nanocomposites and greater intercalation of polypropylene between clay mineral layers but increased the overall migration to a fatty food simulant. This migration value was higher from the 50/50 VPP/RPP film than from VPP. Nonetheless, clays reduced the migration and even more when the clay had greater hydrophilicity because of lower interactions between the nanocomposite and the fatty simulant. Conversely, nanocomposites and VPP/RPP control films exhibited low migration values in the acid and non-acid food simulants. Regarding tensile parameters, elongation at break values of PP film significantly increased with RPP addition, but the incorporation of organoclays reduced its ductility to values closer to the VPP.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2359
Author(s):  
Harmaen Ahmad Saffian ◽  
Masayuki Yamaguchi ◽  
Hidayah Ariffin ◽  
Khalina Abdan ◽  
Nur Kartinee Kassim ◽  
...  

In this study, Kraft lignin was esterified with phthalic anhydride and was served as reinforcing filler for poly(butylene succinate) (PBS). Composites with different ratios of PBS, lignin (L), modified lignin (ML) and kenaf core fibers (KCF) were fabricated using a compounding method. The fabricated PBS composites and its counterparts were tested for thermal, physical and mechanical properties. Weight percent gain of 4.5% after lignin modification and the FTIR spectra has confirmed the occurrence of an esterification reaction. Better thermo-mechanical properties were observed in the PBS composites reinforced with modified lignin and KCF, as higher storage modulus and loss modulus were recorded using dynamic mechanical analysis. The density of the composites fabricated ranged from 1.26 to 1.43 g/cm3. Water absorption of the composites with the addition of modified lignin is higher than that of composites with unmodified lignin. Pure PBS exhibited the highest tensile strength of 18.62 MPa. Incorporation of lignin and KCF into PBS resulted in different extents of reduction in tensile strength (15.78 to 18.60 MPa). However, PBS composite reinforced with modified lignin exhibited better tensile and flexural strength compared to its unmodified lignin counterpart. PBS composite reinforced with 30 wt% ML and 20 wt% KCF had the highest Izod impact, as fibers could diverge the cracking propagation of the matrix. The thermal conductivity value of the composites ranged from 0.0903 to 0.0983 W/mK, showing great potential as a heat insulator.


Sign in / Sign up

Export Citation Format

Share Document