Post landslide Investigation of Shallow Landslide: A case study from the Southern Western Ghats, India

2021 ◽  
Vol 14 (7) ◽  
pp. 52-59
Author(s):  
S. Sarun ◽  
P. Vineetha ◽  
Rajesh Reghunath ◽  
A.M. Sheela ◽  
R. Anil Kumar

Many mountainous regions in the tropics witnessed extreme orographic rainfall episodes in the recent past. The portions of the Western Ghats that fall on the Kerala state also experienced extreme climatic conditions in floods and landslides in 2018 and 2019. More than a thousand small and large landslides occurred during that period in the State's Western Ghats regions. The landslide at Kavalapara in the Malappuram district in 2019 is at the top in the state regarding the causalities, financial loss, and spatial spread. This study is based on a comprehensive field investigation at the Kavalappara landslide site and we developed a detailed landslide susceptibility map with the local community's involvement. The massive landslide covers 0.34 Sq.km (34 hectares) triggered by the unprecedented monsoon rainfall coupled with unsustainable agricultural practices. The area's risk zones have been identified and spatially mapped with the help of a detailed field investigation using Geographic Information System (GIS) and remote sensing technology. The output of the study can be used for the policymakers and planners working in landslide-prone areas.

1988 ◽  
Vol 27 (4II) ◽  
pp. 595-604 ◽  
Author(s):  
Eshya Mujahid Mukhtar ◽  
Hanid Mukhtar

Agricultural production depends upon certain crucial inputs e.g., water, fertilizer etc. In the less developed regions of South Asia in general, and the indo-Pakistan sub-continent in particular, the use of these inputs depends not only upon the financial affordability but also upon the institutional accessibility of farmers to these inputs. Besides high economic costs, bureaucratic controls and corruption regarding the distribution of inputs have created problems of limited accessibility, especially to the small farmers. In the absence of any credit, information and/or input distribution networks, the use of these inputs, and related productivity gains, become confined to that class of farmers which not only has better access to these inputs but is capable of using them in the best possible way e.g. use of water and fertilizer in the appropriate amount and at the appropriate time. This paper attempts to study how input use and input productivity vary across farm sizes, with some reference to the infrastructural and institutional factors, whose development play an important role in improving the distribution and productivity of inputs. For such an analysis, a comparison of the two Punjabs i.e. Pakistani and Indian Punjabs, presents an ideal framework, Separated by a national boundary since 1947, the two Punjabs enjoy a common history and culture, similar agricultural practices and agro-climatic conditions, Government policies in the two Punjabs, however, have not only differed between the two provinces at the same time, but also over time in the same province. It may be noted that due to certain policy measures, land distribution, tenancy conditions, promotion of agricultural co-operatives and provision of infrastructural features, such as roads and electricity, are relatively more improved in Indian than Pakistani Punjab.


Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 214
Author(s):  
Agathe Roucou ◽  
Christophe Bergez ◽  
Benoît Méléard ◽  
Béatrice Orlando

The levels of fumonisins (FUMO)—mycotoxins produced by Fusarium verticillioides—in maize for food and feed are subject to European Union regulations. Compliance with the regulations requires the targeting of, among others, the agroclimatic factors influencing fungal contamination and FUMO production. Arvalis-Institut du végétal has created a national, multiyear database for maize, based on field survey data collected since 2003. This database contains information about agricultural practices, climatic conditions and FUMO concentrations at harvest for 738 maize fields distributed throughout French maize-growing regions. A linear mixed model approach highlights the presence of borers and the use of a late variety, high temperatures in July and October, and a water deficit during the maize cycle as creating conditions favoring maize contamination with Fusarium verticillioides. It is thus possible to target a combination of risk factors, consisting of this climatic sequence associated with agricultural practices of interest. The effects of the various possible agroclimatic combinations can be compared, grouped and classified as promoting very low to high FUMO concentrations, possibly exceeding the regulatory threshold. These findings should facilitate the creation of a national, informative and easy-to-use prevention tool for producers and agricultural cooperatives to manage the sanitary quality of their harvest.


2002 ◽  
Vol 6 (3) ◽  
pp. 497-506 ◽  
Author(s):  
L. Ruiz ◽  
S. Abiven ◽  
P. Durand ◽  
C. Martin ◽  
F. Vertès ◽  
...  

Abstract. The hydrological and biogeochemical monitoring of catchments has become a common approach for studying the effect of the evolution of agricultural practices on water resources. In numerous studies, the catchment is used as a "mega-lysimeter" to calculate annual input-output budgets. However, the literature reflects two opposite interpretations of the trends of nitrate concentration in streamwater. For some authors, essentially in applied studies, the mean residence time of leached nitrate in shallow groundwater systems is much less than one year and river loads reflect annual land use while for others, nitrate is essentially transport limited, independent of soil nitrate supply in the short term and annual variations reflect changes in climatic conditions. This study tests the effect of agricultural land-use changes on inter-annual nitrate trends on stream water of six small adjacent catchments from 0.10 to 0.57 km2 in area, on granite bedrock, at Kerbernez, in Western Brittany (France). Nitrate concentrations and loads in streamwater have been monitored for nine years (1992 to 2000) at the outlet of the catchments. An extensive survey of agricultural practices from 1993 to 1999 allowed assessment of the nitrogen available for leaching through nitrogen budgets. For such small catchments, year-to-year variations of nitrate leaching can be very important, even when considering the 'memory effect' of soil, while nitrate concentrations in streamwater appear relatively steady. No correlation was found between the calculated mean nitrate concentration of drainage water and the mean annual concentration in streams, which can even exhibit opposite trends in inter-annual variations. The climatic conditions do not affect the mean concentration in streamwater significantly. These results suggest that groundwater plays an important role in the control of streamwater nitrate concentration. Keywords: nitrate, diffuse pollution, agricultural catchment, nitrogen budget, leaching, Kerbernez catchments


2013 ◽  
Vol 52 (4) ◽  
pp. 802-818 ◽  
Author(s):  
Seong-Sim Yoon ◽  
Deg-Hyo Bae

AbstractMore than 70% of South Korea has mountainous terrain, which leads to significant spatiotemporal variability of rainfall. The country is exposed to the risk of flash floods owing to orographic rainfall. Rainfall observations are important in mountainous regions because flood control measures depend strongly on rainfall data. In particular, radar rainfall data are useful in these regions because of the limitations of rain gauges. However, radar rainfall data include errors despite the development of improved estimation techniques for their calculation. Further, the radar does not provide accurate data during heavy rainfall in mountainous areas. This study presents a radar rainfall adjustment method that considers the elevation in mountainous regions. Gauge rainfall and radar rainfall field data are modified by using standardized ordinary cokriging considering the elevation, and the conditional merging technique is used for combining the two types of data. For evaluating the proposed technique, the Han River basin was selected; a high correlation between rainfall and elevation can be seen in this basin. Further, the proposed technique was compared with the mean field bias and original conditional merging techniques. Comparison with kriged rainfall showed that the proposed method has a lesser tendency to oversmooth the rainfall distribution when compared with the other methods, and the optimal mean areal rainfall is very similar to the value obtained using gauges. It reveals that the proposed method can be applied to an area with significantly varying elevation, such as the Han River basin, to obtain radar rainfall data of high accuracy.


Russian vine ◽  
2020 ◽  
Vol 14 ◽  
pp. 85-89
Author(s):  
N.A Tikhomirova ◽  
◽  
M.R. Beibulatov ◽  
N.A. Urdenko ◽  
R.A. Buival ◽  
...  

The economic efficiency of the cultivation of grapes as a branch of agriculture depends on the adaptation of grape varieties to the soil and climatic conditions of the place of growth. When developing new agricultural practices and technological solutions for the cultivation of grapes, it is necessary to assess the econom-ic efficiency of the proposed innovative ap-proaches. The cultivation of such grape varie-ties is becoming important and relevant, which, with high productivity and the use of differen-tiated care technology, require minimal costs when servicing the bushes and harvesting. In-creasing labor productivity in the viticulture industry is the most important condition for the intensive development of production. One of these conditions today is the formation of a bush according to the technology element, the shape of a bush AZOS-1, which allows to re-duce the cost of care and harvesting of grapes. The conducted research on the technology of cultivation of table grape varieties in connec-tion with the use of a new form of bush made it possible to economically substantiate the economic efficiency of growing grapes.


2021 ◽  
Author(s):  
◽  
Stephen John Stuart

<p>Precipitation in the central Southern Alps affects glaciation, river flows and key economic activities, yet there is still uncertainty about its spatial distribution and primary influences. Long-term and future patterns of New Zealand precipitation can be estimated by the HadRM3P regional climate model (RCM) - developed by the United Kingdom Met Office - but orographic rainfall in the steep and rugged topography of the Southern Alps is difficult to simulate accurately at the 30-km resolution of the RCM. To quantify empirical relationships, observations of surface rainfall were gathered from rain gauges covering a broad region of the South Island. In four transects of the Hokitika, Franz Josef and Haast regions, the mean annual precipitation maxima of objectively interpolated profiles are consistently located 7-11 km southeast of the New Zealand Alpine Fault. The magnitude and shape of the rainfall profile across the Southern Alps are strongly influenced by the 850-hPa wind direction to the north of the mountain range, as determined by comparing rain-gauge observations to wind vectors from NCEP/NCAR Reanalysis 1. The observed profile of orographically enhanced rainfall was incorporated into a trivariate spline in order to interpolate precipitation simulated by the RCM. This downscaling method significantly improved the RCM's estimates of mean annual rainfall at stations in the Southern Alps region from 1971 to 2000, and RCM projections of future rainfall in mountainous regions may be similarly refined via this technique. The improved understanding of the observed rainfall distribution in the Southern Alps, as gained from this analysis, has a range of other hydrological applications and is already being used in 'downstream' modelling of glaciers.</p>


Author(s):  
Barahim Adnan A. ◽  
Khanbari Khaled M. ◽  
Algodami Amal F. ◽  
Almadhaji Ziad A. ◽  
Adris Ahmed M.

A slope stability assessment of Wadi Dhahr area, located northwest of Sana’a the capital of Yemen, was carried out in this study. The study area consists of sandstone and volcanic rocks that are deformed by number of faults, joints and basaltic dykes. All the important factors affecting slope stability in the area such as slope angle, slope height, discontinuities measurements, weathering, vegetation cover, rainfall and previous landslides were evaluated. The study was conducted based on the integration of field investigation and satellite image processing. A landslide susceptibility map was produced with the Landslide Possibility Index (LP1) System, and the correlation values were computed between the factors measured and Landslide Possibility Index values. The fractures counted by satellite image were categorised according to their length and zones based on their concentrations. It was found that plain sliding and rockfall are the main modes of failure in the area, while rolling and toppling are rare. Some remedial measures are proposed to protect the slopes where it is needed,  such as the removal of rock overhangs, unstable blocks and trees, and by supporting the toe of slopes and overhanging parts by retaining walls and erecting well sealed drainage conduits. The results will assist in slope management and land use planning in the area.


2018 ◽  
Vol 5 (6) ◽  
pp. 180211 ◽  
Author(s):  
Christopher J. Thorpe ◽  
Todd R. Lewis ◽  
Matthew C. Fisher ◽  
Claudia J. Wierzbicki ◽  
Siddharth Kulkarni ◽  
...  

Batrachochytrium dendrobatidis ( Bd ) is a pathogen killing amphibians worldwide. Its impact across much of Asia is poorly characterized. This study systematically surveyed amphibians for Bd across rocky plateaus in the northern section of the Western Ghats biodiversity hotspot, India, including the first surveys of the plateaus in the coastal region. These ecosystems offer an epidemiological model system since they are characterized by differing levels of connectivity, edaphic and climatic conditions, and anthropogenic stressors. One hundred and eighteen individuals of 21 species of Anura and Apoda on 13 plateaus ranging from 67 to 1179 m above sea level and 15.89 to 17.92° North latitude were sampled. Using qPCR protocols, 79% of species and 27% of individuals tested were positive for Bd . This is the first record of Bd in caecilians in India, the Critically Endangered Xanthophryne tigerina and Endangered Fejervarya cf. sahyadris . Mean site prevalence was 28.15%. Prevalence below the escarpment was 31.2% and 25.4% above. The intensity of infection (GE) showed the reverse pattern. Infection may be related to elevational temperature changes, thermal exclusion, inter-site connectivity and anthropogenic disturbance. Coastal plateaus may be thermal refuges from Bd . Infected amphibians represented a wide range of ecological traits posing interesting questions about transmission routes.


2021 ◽  
Vol 43 (4) ◽  
pp. 437-450
Author(s):  
Irina Malneva ◽  
Nina Kononova ◽  
Muhtar Hadzhiev

The article presents an assessment of technogenic impact on the development of hazardous geological processes in the mountainous regions of the Northern Caucasus in the current century. Technogenic impact is determined by the stability of rock formations that make up the Krasnodar Territory, Kabardino-Balkaria, and North Ossetia relative to the impacts of other forces. It is also noted that the activity of hazardous geological processes is largely determined by the interaction of climatic conditions, which determine their speed, and technogenesis. Examples of problematic territories of the North Caucasus are given. To assess climatic changes and major catastrophes, a typology of atmospheric circulation in the Northern Hemisphere was developed under the leadership of B.L. Dzerdzeevsky. Typification materials from the period between 1899 and 2018 are posted in the public domain, at www.atmospheric-circulation.ru. The largest catastrophes, in which landslides and mudflows became more active, and the interaction of natural and man-made factors in these disasters are considered.Hazardous geological processes can disrupt the sustainable development of individual regions with their negative impact on the environment. The assessment of their danger is therefore of special current relevance. The article considers the possibility of predicting catastrophes associated with these processes. Long-term forecasts of landslides, mudflows and other processes continue to be important. The methodology of such forecasting was previously developed in sufficient detail. The greatest importance is assigned to operational forecasts that will make it possible to warn of possible danger hours or even days ahead.


2021 ◽  
Author(s):  
Mingda Cao

&lt;p&gt;The spatiotemporal changes of nitrate in agricultural watersheds are of global concern. Although numerous studies have explained the source and transformation mechanism of nitrate in groundwater and surface water, the transformation mechanism in groundwater remains poorly understood because of different hydrogeological and climatic conditions. Based on a field investigation and sampling, this study revealed the sources and transformation mechanism of nitrogen in surface water and groundwater in a karst agricultural watershed by comprehensively using water chemistry data, isotope components, and a Bayesian model (simmr). The results indicated that:1)Local agricultural activities have controlled the changes of &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N-NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;, &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O-NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; and &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N-NH&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt; in groundwater. The difference is that the concentration of NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; is significantly affected by rainfall. However, the contribution of rainfall to groundwater NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; is relatively small (&lt;9%), indicating that there is a dual influence mechanism of leaching in the watershed that controls the concentration of groundwater NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;, while agricultural activities control its isotope changes;2)The study observed that after fertilization, due to the influence of ammonia volatilization and nitrification, &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N-NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;, &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O-NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; in groundwater showed a simultaneous decrease, while &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N-NH&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt; showed an increasing trend, which may be due to the result of incomplete nitration of NH&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt; in the vadose zone;3)According to the calculation results of the simmr model, in the two main fertilization periods in October 2018 and April 2019, the contribution of chemical fertilizers to groundwater NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;reached the peak value(65% and 69%), which is in line with the seasonal variations of &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N-NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;, &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O-NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;and &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N-NH&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt;;4)The surface water in the watershed is mainly supplied by groundwater, and the contribution of chemical fertilizers to surface water NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; is generally higher than that of groundwater. This may be caused by the drainage of rice fields containing chemical fertilizers into the river.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document