Hypolipidemic activity of parts of Luffa aegiptiaca in poloxomer induced hyperlipidemia

2020 ◽  
Vol 8 (1) ◽  
pp. 1-4
Author(s):  
Abhilash G ◽  
Anil kumar A ◽  
Raja Sheker K ◽  
Naveen B

Cholesterol and lipids are the major class of metabolites that are used to store high energy in the form of fats in the body. They are often stored in specific places in the system and some times misplaced in the bloodstream and other areas leading to metabolic disorders. The elevation in their quantities in serum is often termed as Hyperlipidemia. It affects most the worlds population adversely and is the causative factor for many comorbidities. Usually, medicinal plants exhibit the activities which are mainly due to the chemical constituents in them that are mostly phenols and flavonols. The plant Luffa aegiptiaca was investigated for its hyperlipidemic activity in high-fat diet-induced diabetes method. The results showed hyperlipidemic activity by lowering the lipid levels in the serum Four parts of the plant Luffa aegiptiaca were investigated for the antihyperlipidemic activity by extracting them with ethanol. These were tested for the lipid reducing property in the rat models induced by poloxamer drug. There was a successful induction of the Hyperlipidemia in the animals. The extracts showed a significant activity int his model. Fruits and leaves showed the best activity compared to other parts.

Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 99 ◽  
Author(s):  
Wang Ling ◽  
Shungeng Li ◽  
Xingcai Zhang ◽  
Yongquan Xu ◽  
Ying Gao ◽  
...  

: Probiotic dark tea (PDT) is a novel kind of dark tea produced by fresh albino tea leaves and fermented with specific probiotics. Our study demonstrates that PDT can ameliorate high-fat diet-induced overweight and lipid metabolic disorders and shows no acute or subacute toxicity in Sprague-Dawley (SD) rats. Daily intragastric administration of 5% PDT infusion for 14 days caused no obvious effect on general physiological features and behaviors of rats. Oral administration of 1%, 2%, and 3% of PDT infusion for six weeks had no influence on the biochemistry and histopathology of rats’ organs and blood, as well as the body weight and ratios of organ/body weight. To investigate its anti-obesity activity, SD rats were randomly divided into four groups, treated with normal diet + water (Group I), high-fat diet + water (Group II), high-fat diet + 3% traditional dark tea infusion (Group III), high-fat diet + 3% PDT infusion (Group IV). After six weeks, the body weight, serum total triacylglycerol (TG) and serum total cholesterol (TC) levels of rats in Group II were significantly increased and the high-density lipoprotein cholesterol (HDL) levels were significantly decreased compared with those in the other three groups. Both traditional dark tea and PDT treatment effectively counteracted the adverse effect of a high-fat diet in SD rats. These results suggest that PDT could be applied for the prevention of obesity, which ameliorates overweight and lipid metabolic disorders and which shows no acute or subacute toxicity.


2019 ◽  
Vol 122 (9) ◽  
pp. 1062-1072 ◽  
Author(s):  
Jian Sang ◽  
Hengxian Qu ◽  
Ruixia Gu ◽  
Dawei Chen ◽  
Xia Chen ◽  
...  

AbstractExcessive intake of high-energy diets is an important cause of most obesity. The intervention of rats with high-fat diet can replicate the ideal animal model for studying the occurrence of human nutritional obesity. Proteomics and bioinformatics analyses can help us to systematically and comprehensively study the effect of high-fat diet on rat liver. In the present study, 4056 proteins were identified in rat liver by using tandem mass tag. A total of 198 proteins were significantly changed, of which 103 were significantly up-regulated and ninety-five were significantly down-regulated. These significant differentially expressed proteins are primarily involved in lipid metabolism and glucose metabolism processes. The intake of a high-fat diet forces the body to maintain physiological balance by regulating these key protein spots to inhibit fatty acid synthesis, promote fatty acid oxidation and accelerate fatty acid degradation. The present study enriches our understanding of metabolic disorders induced by high-fat diets at the protein level.


Author(s):  
Soujanya H ◽  
Purushothaman M ◽  
Jagadeeshwari S ◽  
Shiva Kumar K

Hypercholesterolemia is one of the dreadful conditions that coexist in almost all the heart and endocrine-related dysfunctions. Simply elevated cholesterol levels in the blood is termed as hypercholesterolemia. Hyperlipidemia is also a synonym term and used to define elevated lipid levels. It affects almost all human beings in the world currently because of the changes in the food and living habits of the people. Most works proved those chemical constituents are antioxidants that demonstrate that the assertion that the oxidation is the main problem in causing the hyperlipidemia. So, in this research, antioxidant herbs like Psidium guava, Tephrosia and Moringa are used to prepare a gel that targets the fat deposits it the body and investigate for the antihyperlipidemic property. Herbal microspheres were prepared using the extracts of Tephrosia, Moringa and Psidium, which are incorporated into the sodium alginate and calcium carbonate. These microspheres were tested for their hyperlipidemic activity along with the extracts as such, and the results showed the microspheres showing better activity compared to the extracts compared to the standard drug atorvastatin.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Dinesh Dhingra ◽  
Deepak Lamba ◽  
Ramesh Kumar ◽  
Pashupati Nath ◽  
Satyaprakash Gauttam

The present study was designed to investigate antihyperlipidemic activity of dried pulp of Aloe succotrina leaves in Wistar albino rats. Hyperlipidemia was induced in rats by feeding them high fat diet (HFD) or D-fructose (25% w/v) for 4 successive weeks. From 15th to 28th day, dried pulp (100 and 200 mg/kg, p.o) and atorvastatin (10 mg/kg, p.o.) per se were administered 2 h prior to feeding rats with HFD or fructose. Aloe succotrina did not significantly decrease the body weight of rats. The dried pulp and atorvastatin per se significantly decreased relative liver weight but did not significantly affect relative heart weight. HFD or fructose significantly increased serum total cholesterol, triglycerides, LDL-c, and VLDL, and decreased HDL-c; significantly increased liver MDA and decreased GSH levels. The dried pulp (200 mg/kg p.o.) significantly reversed high fat diet-induced and fructose-induced hyperlipidemia and atherogenic index. Aloe succotrina significantly decreased HMG Co-A reductase activity. Antihyperlipidemic effect of the dried pulp was comparable to atorvastatin. Thus, Aloe succotrina produced significant antihyperlipidemic activity in both HFD and fructose-induced hyperlipidemic rats, possibly through normalization of serum lipid profile, HMG-CoA reductase inhibitory activity, and amelioration of oxidative stress in liver.


2021 ◽  
Vol 8 ◽  
Author(s):  
Taida Huang ◽  
Mo Yang ◽  
Yunxin Zeng ◽  
Xiaomin Huang ◽  
Nan Wang ◽  
...  

Objectives: Maternal smoking causes fetal underdevelopment and results in births which are small for gestation age due to intrauterine undernutrition, leading to various metabolic disorders in adulthood. Furthermore, postnatal high fat diet (HFD) consumption is also a potent obesogenic factor, which can interact with maternal smoking. In this study, we aimed to determine whether maternal HFD consumption during pregnancy can reverse the adverse impact of maternal smoking and change the response to postnatal HFD consumption.Methods: Female mice were exposed to cigarette smoke (SE, 2 cigarettes/day) or sham exposed for 5 weeks before mating, with half of the SE dams fed HFD (43% fat, SE+HFD). The same treatment continued throughout gestation and lactation. Male offspring from each maternal group were fed the same HFD or chow after weaning and sacrificed at 13 weeks.Results: Maternal SE alone increased body weight and fat mass in HFD-fed offspring, while SE+HFD offspring showed the highest energy intake and glucose metabolic disorder in adulthood. In addition, postnatal HFD increased the body weight and aggravated the metabolic disorder caused by maternal SE and SE+HFD.Conclusions: Maternal HFD consumption could not ameliorate the adverse effect of maternal SE but exaggerate metabolic disorders in adult offspring. Smoking cessation and a healthy diet are needed during pregnancy to optimize the health outcome in the offspring.


mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Xiaoyu Gao ◽  
Songlin Chang ◽  
Shuangfeng Liu ◽  
Lei Peng ◽  
Jing Xie ◽  
...  

ABSTRACT Previous studies have shown that α-linolenic acid (ALA) has a significant regulatory effect on related disorders induced by high-fat diets (HFDs), but little is known regarding the correlation between the gut microbiota and disease-related multitissue homeostasis. We systematically investigated the effects of ALA on the body composition, glucose homeostasis, hyperlipidemia, metabolic endotoxemia and systemic inflammation, white adipose tissue (WAT) homeostasis, liver homeostasis, intestinal homeostasis, and gut microbiota of mice fed an HFD (HFD mice). We found that ALA improved HFD-induced multitissue metabolic disorders and gut microbiota disorders to various degrees. Importantly, we established a complex but clear network between the gut microbiota and host parameters. Several specific differential bacteria were significantly associated with improved host parameters. Rikenellaceae_RC9_gut_group and Parasutterella were positively correlated with HFD-induced “harmful indicators” and negatively correlated with “beneficial indicators.” Intriguingly, Bilophila showed a strong negative correlation with HFD-induced multitissue metabolic disorders and a significant positive correlation with most beneficial indicators, which is different from its previous characterization as a “potentially harmful genus.” Turicibacter might be the key beneficial bacterium for ALA-improved metabolic endotoxemia, while Blautia might play an important role in ALA-improved gut barrier integrity and anti-inflammatory effects. The results suggested that the gut microbiota, especially some specific bacteria, played an important role in the process of ALA-improved multitissue homeostasis in HFD mice, and different bacteria might have different divisions of regulation. IMPORTANCE Insufficient intake of n-3 polyunsaturated fatty acids is an important issue in modern Western-style diets. A large amount of evidence now suggests that a balanced intestinal microecology is considered an important part of health. Our results show that α-linolenic acid administration significantly improved the host metabolic phenotype and gut microbiota of mice fed a high-fat diet, and there was a correlation between the improved gut microbiota and metabolic phenotype. Some specific bacteria may play a unique regulatory role. Here, we have established correlation networks between gut microbiota and multitissue homeostasis, which may provide a new basis for further elucidating the relationship between the gut microbiota and host metabolism.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
El-Shaimaa A. Arafa ◽  
Waseem Hassan ◽  
Ghulam Murtaza ◽  
Manal Ali Buabeid

Obesity linked diabetes, popularly known as diabesity, has been viewed as a direct product of the modern lifestyle in both developed and developing countries, and its increased prevalence is seen as a major threat to public health globally. Ficus carica (FC) and Syzigium cumini (SC) are part of indigenous flora with traditional medicinal properties. Fresh seeds of SC fruit and fruit of FC were collected and macerated to obtain the final extract. Wistar rats were divided into seven groups fed either on a normal diet or high-fat diet (HFD) along with streptozocin (STZ) to induce diabesity. The crude extract of FC (FC.Cr.) and SC (SC.Cr.) were administered at 250 mg/kg/day and 500 mg/kg/day in induced diabesity state. Body weights, blood glucose level, complete blood count (CBC), cholesterol, triglycerides (TG), low-density lipoprotein (LDL), very-low-density lipoprotein (VLDL), and high-density lipoprotein (HDL) were recorded to analyze their effects on glucose and lipid metabolism. Further, superoxide dismutase (SOD) and malondialdehyde (MDA) were measured to examine their effects on lipid peroxidation and ant oxidative enzyme. Results showed that both FC.Cr. and SC.Cr. have the potential to control obesity-linked type 2 diabetes mellitus (T2DM) by lowering the body weights, serum glucose, cholesterol, TG, LDL, and VLDL, while increasing the protective effects of HDL dose-dependently. The crude extract of both plants showed significant activity to raise SOD and curb MDA under diabetic states. It was concluded that both FC.Cr. and SC.Cr. exhibited remarkable therapeutics potential in HFD-STZ-induced diabetic rats. However, we found that the effects of SC.Cr. are relatively more pronounced as compared to FC.Cr. in almost all parameters.


2011 ◽  
Vol 47 (1) ◽  
pp. 81-97 ◽  
Author(s):  
Loes P M Duivenvoorde ◽  
Evert M van Schothorst ◽  
Annelies Bunschoten ◽  
Jaap Keijer

High energy intake and, specifically, high dietary fat intake challenge the mammalian metabolism and correlate with many metabolic disorders such as obesity and diabetes. However, dietary restriction (DR) is known to prevent the development of metabolic disorders. The current western diets are highly enriched in fat, and it is as yet unclear whether DR on a certain high-fat (HF) diet elicits similar beneficial effects on health. In this research, we report that HF-DR improves metabolic health of mice compared with mice receiving the same diet on anad libitumbasis (HF-AL). Already after five weeks of restriction, the serum levels of cholesterol and leptin were significantly decreased in HF-DR mice, whereas their glucose sensitivity and serum adiponectin levels were increased. The body weight and measured serum parameters remained stable in the following 7 weeks of restriction, implying metabolic adaptation. To understand the molecular events associated with this adaptation, we analyzed gene expression in white adipose tissue (WAT) with whole genome microarrays. HF-DR strongly influenced gene expression in WAT; in total, 8643 genes were differentially expressed between both groups of mice, with a major role for genes involved in lipid metabolism and mitochondrial functioning. This was confirmed by quantitative real-time reverse transcription-PCR and substantiated by increase in mitochondrial density in WAT of HF-DR mice. These results provide new insights in the metabolic flexibility of dietary restricted animals and suggest the development of substrate efficiency.


2020 ◽  
pp. 14-17
Author(s):  
Irina A. Shkuratova ◽  
◽  
Lyudmila I. Drozdova ◽  
Aleksander I. Belousov ◽  

Mycotoxicological monitoring of forages shows that the problem of mycotoxicosis has been relevant for several decades. Minimal doses of mycotoxins in feed lead to a decrease in milk productivity, increased sensitivity to infectious and non-infectious diseases. When several mycotoxins enter the body simultaneously, a synergistic effect develops, causing a significant increase in toxicity. Feed contaminated with several types of fungi and their toxins is dangerous for dairy cattle. It was found that the feed mixture contained the types of associations of Aspergillus spp. fungi + Fusarium; Aspergillus spp. + Penicillium spp. + Mucor spp; Fusarium + Penicillium; Mucor spp. + Fusarium + Ustilaginales. Pathogenetic features of metabolic and morphological changes in highly productive cows with polymycotoxicosis were studied. Feeding food contaminated with various metabolites of mold fungi leads to the development of signs of chronic toxemia in animals. Clinical manifestations are the development of diarrhea and dehydration, with a decrease in milk productivity. Metabolic disorders feature the development of an inflammatory process, metabolic acidosis, hyperfermentonemia, with an increase in the amount of creatinine and urea in the blood serum. Metabolic signs indicate the development of hepatorenal syndrome due to structural disorders of the liver and kidneys. Histological signs of polymicotoxicosis are intracapillary and hemorrhagic glomerulonephritis, hepatocyte micronecrosis, and proliferation of connective tissue stroma cells, which leads to the development of atrophic cirrhosis in the interstitial and circular phases.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 2038-P
Author(s):  
YUKI HIGUCHI ◽  
MICHIHIRO HOSOJIMA ◽  
HIDEYUKI KABASAWA ◽  
SHOJI KUWAHARA ◽  
RYOHEI KASEDA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document