scholarly journals Effect of the RME Biodiesel on the Diesel Engine Fuel Consumption and Emission

Author(s):  
Dariusz Kurczyński

Road transport is the primary source of atmospheric air pollution, thus posing a threat to human health and life. The aim of the study was to determine the impact of fuel obtained from plants on the ecological properties of a compression ignition engine. The article reports the results of investigations into a modern engine with a Common Rail system, powered by the RME (rapeseed methyl esters) biodiesel and their blends with diesel. For comparison, the engine was also fuelled with conventional diesel oil without ester addition. When powering the engine with blends and pure biodiesel, brake specific fuel consumption increased. The concentrations of nitrogen oxides and carbon dioxide in the engine exhaust gas also slightly increased. At the same time, a clear reduction in average concentrations of carbon monoxide, hydrocarbons and particulates matter was obtained.

2003 ◽  
Vol 125 (3) ◽  
pp. 820-826 ◽  
Author(s):  
A. K. Agarwal ◽  
J. Bijwe ◽  
L. M. Das

Biodiesel is prepared using linseed oil and methanol by the process of transesterification. Use of linseed oil methyl ester (LOME) in a compression ignition engine was found to develop a highly compatible engine-fuel system with low emission characteristics. Two similar engines were operated using optimum biodiesel blend and mineral diesel oil, respectively. These were subjected to long-term endurance tests. Lubricating oil samples drawn from both engines after a fixed interval were subjected to elemental analysis. Quantification of various metal debris concentrations was done by atomic absorption spectroscopy (AAS). Wear metals were found to be about 30% lower for a biodiesel-operated engine system. Lubricating oil samples were also subjected to ferrography indicating lower wear debris concentrations for a biodiesel-operated engine. The additional lubricating property of LOME present in the fuel resulted in lower wear and improved life of moving components in a biodiesel-fuelled engine. However, this needed experimental verification and quantification. A series of experiments were thus conducted to compare the lubricity of various concentrations of LOME in biodiesel blends. Long duration tests were conducted using reciprocating motion in an SRV optimol wear tester to evaluate the coefficient of friction, specific wear rates, etc. The extent of damage, coefficient of friction, and specific wear rates decreased with increase in the percentage of LOME in the biodiesel blend. Scanning electron microscopy was conducted on the surfaces exposed to wear. The disk and pin using 20% biodiesel blend as the lubricating oil showed lesser damage compared to the one subjected to diesel oil as the lubricating fluid, confirming additional lubricity of biodiesel.


2018 ◽  
Vol 234 ◽  
pp. 03001 ◽  
Author(s):  
Evgeni Dimitrov ◽  
Boyko Gigov ◽  
Spas Pantchev ◽  
Philip Michaylov ◽  
Mihail Peychev

In this paper, a dual-fuel compression ignition engine test bench is presented. In hydrogen-diesel fuel co-combustion conditions, the engine parameters are determined – performance: effective torque, effective power and mean effective pressure; fuel economy: fuel consumption and specific fuel consumption; toxicity: carbon monoxide, carbon dioxide, nitrogen oxides, hydrocarbons, and smoke emissions (opacity). The impact of hydrogen-diesel fuel mass ratio on the performance, toxicity and economy of the engine is studied by obtaining a series of hydrogen-diesel fuel ratio variation characteristics at constant engine speed and load. Improvement of the economical parameters of the engine and reduction of carbon dioxide concentration in exhaust gases is detected under operation with hydrogen gas fuel. Significant reduction of the exhaust gases opacity is observed. It is not clear what the impact of the quantity of hydrogen, injected in the engine, on the concentration of nitrogen oxides in the exhaust gases is.


2018 ◽  
Vol 19 (12) ◽  
pp. 233-237
Author(s):  
Tomasz Skrzek ◽  
Grzegorz Jarzyński

The paper presents the results of research on dual-fuel, compression ignition engine, powered by natural gas. The main objective of the conducted research was to determine the impact of injection parameters initiating the ignition of a diesel oil dose, i.e.: the size and injection timing, on the emission of particulate matters. Studies have shown that when using a split of the diesel dose for the pilot and main dose, despite the significant (70%) share of natural gas in the mixture being combusted, the emission of particulate matters is comparable and even higher than that obtained on standard fuel. Previous studies of the dual-fuel engine showed that there is a clear need to divide the diesel dose into a pilot dose and the main dose. This division significantly affects the course of heat release, and at the same time is an effective method of reducing the maximum rate pressure rise, which allows increasing the share of gaseous fuel. From the point of view of particulate emissions, such division is counterproductive. The obtained results indicate that the values of pilot and main doses and their injection timing significantly affect the conditions of formation of particulate matters.


2014 ◽  
Vol 2 (1) ◽  
pp. 5-7
Author(s):  
Andrzej Ambrozik ◽  
◽  
Tomasz Ambrozik ◽  
Dariusz Kurczyński ◽  
Piotr Łagowski

The paper presents results of investigations into the AD3.152 UR engine running on five fuels: commercial diesel oil DO, rapeseed oil fatty acid methyl esters FAME and their blends B10 (90% DO + 10% FAME), B20 (80% DO + 20% FAME), B30 (70% DO + 30% FAME). During the tests, the engine operated in accordance with the full load characteristics. Those characteristics were used to determine the engine response. The paper provides an assessment of the impact of the type of plant-derived fuel on the engine response.


Author(s):  
José Galindo ◽  
Héctor Climent ◽  
Joaquín de la Morena ◽  
David González-Domínguez ◽  
Stéphane Guilain ◽  
...  

The combination of a growing number of complex technologies in internal combustion engines (ICE) is commonplace, due to the need of complying with the tight pollutant regulations and achieving high efficiencies. Hence the work of calibration engineers is led by a constant increase in degrees of freedom in ICE design. In this research work, a wide analysis on the optimization of combined variable valve timing (VVT) and exhaust gases recirculation (EGR) strategies is developed, in order to reduce fuel consumption in a EURO 6 1.3l 4-stroke 4-cylinder, gasoline, turbocharged, direct-injection engine, also equipped with a variable nozzle turbine (VNT). For that purpose, a methodology which combines 1D engine simulations with limited experimental work was applied. First, the data from 25 experimental tests distributed into three steady engine operating conditions was used to calibrate a 1D model. Then, modeling parametric studies were performed to optimize VVT and EGR parameters. A total of 150 cases were simulated for each operating point, in which VVT settings and EGR rate were varied at iso-air mass flow and iso-intake manifold temperature. The optimization was based on finding the configuration of VVT and EGR systems which maximizes the indicated efficiency. All different cases modeled were also evaluated in terms of pumping and heat losses. Moreover, a deep assessment of instantaneous pressure traces and mass flows in intake and exhaust valves was given, to provide insights about the optimization procedure. Finally, the findings obtained by simulation were compared with the results from a design of experiments (DOE) composed of more than 300 tests, and the impact on engine fuel consumption was analyzed.


2010 ◽  
Vol 156-157 ◽  
pp. 1014-1018 ◽  
Author(s):  
Gen Bao Li

To use dimethyl ether as fuel for compression ignition engine to partially replace fossil oil, this study developed a city bus operating on DME blended with diesel oil. Considering fuel lubricity, viscosity, and calorific value, the optimized mixing ratio for blend fuel was chosen as 20 wt% DME in diesel oil (D20). Vapor pressure experiments carried out using a highly accurate thermophysical property measurement system showed that the backpressure for blended fuels must not be lower than 0.6Mpa to avoid vapor block in the engine fuel supply system. Moreover, because DME attacks conventional polymer sealants in the fuel system, new sealants made of nitrile rubber (NBR) were used to replace those original one. Experiments demonstrated that these were resistant to swelling by DME. For engine performance, it was found that fueled with D20, the rated engine power output can be comparable to that of diesel engine after increasing the supplied fuel amount per cycle, while the overall fuel economy was improved simultaneously. Moreover, for load characteristics at 1800r/min, over 70% reduction in smoke and 20% reduction in nitrogen oxides (NOx) emission were achieved, indicating that using DME blends as fuel can significantly improve the engine emissions.


2021 ◽  
Author(s):  
Jacek Hunicz ◽  
Paweł Krzaczek ◽  
Michał Gęca ◽  
Arkadiusz Rybak ◽  
Maciej Mikulski

This study investigates combustion and emission characteristics of a contemporary single-cylinder compression ignition engine fuelled with diesel, fatty acid methyl esters (FAME) and hydrotreated vegetable oil (HVO). These two drop-in fuels have an increasing share in automotive supply chains, yet have substantially different physical and auto-ignition properties. HVO has a lower viscosity and higher cetane number, and FAME has contrary characteristics. These parameters heavily affect mixture formation and the following combustion process, causing that the engine pre-optimized to one fuel option can provide deteriorated performance and excess emissions if another sustainable option is applied. To investigate the scale of this problem, injection pressure sweeps were performed around the stock, low NOX and low PM engine calibration utilizing split fuel injection. The results showed that FAME and HVO prefer lower injection pressures than diesel fuel, with the benefits of simultaneous reduction of all emission indicators compared to DF. Additionally, reduction of injection pressure from 80 MPa to 60 MPa for biodiesels at low engine load resulted in improved brake thermal efficiency by 1 percentage point, due to reduced parasitic losses in the common rail system.


Sign in / Sign up

Export Citation Format

Share Document