scholarly journals Carbohydrate/protein hydrogels as responsive scaffolds in controlling inorganic crystallization

2021 ◽  
Author(s):  
◽  
Saeedeh Afsar

<p>The strategies that both invertebrate and vertebrate organism use to produce organic-inorganic composite materials for different purposes such as mechanical support and protection for the body are fascinating. While extensive research has been done on understanding the basic principles of biomineral formation, mimicking the critical principles of the mechanisms of biomineralization in vitro and fully capturing the structural information and characteristics remain challenging issues for scientists.  Calcium is an essential element in biological systems. It plays a central role in the mineralization and maintenance of the skeleton as well as in fundamental physiological processes including growth and development in vertebrates. Within a biological organism calcium ions are stored, delivered, or released in the presence of different anions such as phosphate, carbonate and citrate. Competition between the different anions which interact with calcium ions in different hydrogel matrices leads to manipulation of the various composite materials produced such as bone and nacre. Soluble anionic acidic macromolecules associated with biominerals play a vital role in modulating the mineral morphology and hierarchy of the organized composite. Understanding the interaction between the constituent ions and the organic matrix is crucial if we are to make synthetic materials, the structure and properties of which replicate those of native biominerals, or materials that have the storage and/or release characteristics of foods, for example.  Carbohydrate-based hydrogels versus protein-based hydrogels are used here as scaffolds for the synthesis of calcium carbonate and calcium phosphate biominerals. Water soluble acidic additives are used to modulate the nucleation and growth of the minerals. In particular chitosan and gelatin hydrogel templates were used as the mineralization scaffolds. Three different mineralization methods were used: the Kitano, alternate soaking and McGrath methods. Monomeric vs. polymeric additives (acrylic acid, glutamic acid, aspartic acid and their corresponding polymers) were introduced into all systems in order to control the nucleation and growth of the so-formed minerals. The morphology, crystallinity, polymorphism and composition of the synthesized organic-inorganic composites were investigated. Analyses were carried out using a number of techniques including Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), micro-Raman spectroscopy and solid-sate NMR.  In the case of calcium carbonate the morphology and crystallinity were more affected by the use of polymeric additives compared with their monomeric equivalents. In particular the calcium carbonate preferentially grew laterally within and on the periphery of the chitosan or gelatin hydrogel scaffold. This results from the formation of a polyelectrolyte complex between the chitosan or gelatin hydrogels and the added polymer. The presence of the polyelectrolyte complex modifies the nucleation of the mineral. Nanoparticles are preferentially formed which then aggregate together maintaining a lateral perspective with the scaffold.  In the case of calcium phosphate mostly spherical and platelet-shaped morphologies composed of amorphous calcium phosphate and poorly crystalline hydroxylapatite respectively were always formed within both chitosan and gelatin hydrogel scaffolds. pH was also found to be a key factor in controlling which polymorph of calcium phosphate precipitates. The crystallinity is influenced by the presence of additives for chitosan scaffold. For systems with added aspartic or polyaspartic acid platelet-shaped CaP forms. These crystals are more highly crystalline compared to those where predominately the porous spherical calcium phosphate morphology is observed which form when L-glutamic acid is added. In the presence of polymeric additives nanoparticles form which then aggregate to yield larger crystals. Such aggregation was preferentially observed for gelatin scaffolds.  Citrate anions are particularly important in calcium phosphate precipitation in bone. Biomimetic hydroxylapatite-chitosan and hydroxylapatite-gelatin nanocomposite were synthesized where citrate ions were used to control the size and crystallinity of the hydroxylapatite crystals. TEM data show that the size of the hydroxylapatite crystals decreases upon introducing citrate ions into the systems. Solid-state NMR dipolar dephasing data indicate the hydroxylapatite precipitation can be stabilized with 2.5 wt% sodium citrate with respect to the chitosan and gelatin mass.  The data included within this thesis illustrate that both gelatin and chitosan hydrogel scaffolds display similar ability in modulating calcium carbonate or calcium phosphate crystallization in the absence and presence of additives. The role of soluble acidic additives is significant in the formation of biominerals. These results reveal therefore the possibility that carbohydrate-based systems, which have many advantages over protein-based systems, could be used to provide more options for fabricating new implantable materials for humans and animals. The results from the combination of techniques used including XRD, SSNMR and TEM showed the possibility of in vitro synthesis of a bio-nanocomposite material in the presence of citrate similar to that of natural bone (in terms of composition and morphology). The achievement of this work demonstrates that new advanced materials with various composite structures and morphologies can be synthesized through a biomimetic biomineralization mechanism under ambient conditions similar to natural materials such as bone and nacre. These advancements have potential application in biomedical research and more specifically in fabrication of implantable materials.</p>

2021 ◽  
Author(s):  
◽  
Saeedeh Afsar

<p>The strategies that both invertebrate and vertebrate organism use to produce organic-inorganic composite materials for different purposes such as mechanical support and protection for the body are fascinating. While extensive research has been done on understanding the basic principles of biomineral formation, mimicking the critical principles of the mechanisms of biomineralization in vitro and fully capturing the structural information and characteristics remain challenging issues for scientists.  Calcium is an essential element in biological systems. It plays a central role in the mineralization and maintenance of the skeleton as well as in fundamental physiological processes including growth and development in vertebrates. Within a biological organism calcium ions are stored, delivered, or released in the presence of different anions such as phosphate, carbonate and citrate. Competition between the different anions which interact with calcium ions in different hydrogel matrices leads to manipulation of the various composite materials produced such as bone and nacre. Soluble anionic acidic macromolecules associated with biominerals play a vital role in modulating the mineral morphology and hierarchy of the organized composite. Understanding the interaction between the constituent ions and the organic matrix is crucial if we are to make synthetic materials, the structure and properties of which replicate those of native biominerals, or materials that have the storage and/or release characteristics of foods, for example.  Carbohydrate-based hydrogels versus protein-based hydrogels are used here as scaffolds for the synthesis of calcium carbonate and calcium phosphate biominerals. Water soluble acidic additives are used to modulate the nucleation and growth of the minerals. In particular chitosan and gelatin hydrogel templates were used as the mineralization scaffolds. Three different mineralization methods were used: the Kitano, alternate soaking and McGrath methods. Monomeric vs. polymeric additives (acrylic acid, glutamic acid, aspartic acid and their corresponding polymers) were introduced into all systems in order to control the nucleation and growth of the so-formed minerals. The morphology, crystallinity, polymorphism and composition of the synthesized organic-inorganic composites were investigated. Analyses were carried out using a number of techniques including Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), micro-Raman spectroscopy and solid-sate NMR.  In the case of calcium carbonate the morphology and crystallinity were more affected by the use of polymeric additives compared with their monomeric equivalents. In particular the calcium carbonate preferentially grew laterally within and on the periphery of the chitosan or gelatin hydrogel scaffold. This results from the formation of a polyelectrolyte complex between the chitosan or gelatin hydrogels and the added polymer. The presence of the polyelectrolyte complex modifies the nucleation of the mineral. Nanoparticles are preferentially formed which then aggregate together maintaining a lateral perspective with the scaffold.  In the case of calcium phosphate mostly spherical and platelet-shaped morphologies composed of amorphous calcium phosphate and poorly crystalline hydroxylapatite respectively were always formed within both chitosan and gelatin hydrogel scaffolds. pH was also found to be a key factor in controlling which polymorph of calcium phosphate precipitates. The crystallinity is influenced by the presence of additives for chitosan scaffold. For systems with added aspartic or polyaspartic acid platelet-shaped CaP forms. These crystals are more highly crystalline compared to those where predominately the porous spherical calcium phosphate morphology is observed which form when L-glutamic acid is added. In the presence of polymeric additives nanoparticles form which then aggregate to yield larger crystals. Such aggregation was preferentially observed for gelatin scaffolds.  Citrate anions are particularly important in calcium phosphate precipitation in bone. Biomimetic hydroxylapatite-chitosan and hydroxylapatite-gelatin nanocomposite were synthesized where citrate ions were used to control the size and crystallinity of the hydroxylapatite crystals. TEM data show that the size of the hydroxylapatite crystals decreases upon introducing citrate ions into the systems. Solid-state NMR dipolar dephasing data indicate the hydroxylapatite precipitation can be stabilized with 2.5 wt% sodium citrate with respect to the chitosan and gelatin mass.  The data included within this thesis illustrate that both gelatin and chitosan hydrogel scaffolds display similar ability in modulating calcium carbonate or calcium phosphate crystallization in the absence and presence of additives. The role of soluble acidic additives is significant in the formation of biominerals. These results reveal therefore the possibility that carbohydrate-based systems, which have many advantages over protein-based systems, could be used to provide more options for fabricating new implantable materials for humans and animals. The results from the combination of techniques used including XRD, SSNMR and TEM showed the possibility of in vitro synthesis of a bio-nanocomposite material in the presence of citrate similar to that of natural bone (in terms of composition and morphology). The achievement of this work demonstrates that new advanced materials with various composite structures and morphologies can be synthesized through a biomimetic biomineralization mechanism under ambient conditions similar to natural materials such as bone and nacre. These advancements have potential application in biomedical research and more specifically in fabrication of implantable materials.</p>


2009 ◽  
Vol 610-613 ◽  
pp. 1391-1394
Author(s):  
Hua De Zheng ◽  
Ying Jun Wang ◽  
Qiang Ma ◽  
Cheng Yun Ning ◽  
Xiao Feng Chen

In the present study, an Intelligent Multi-parameter Simulated Evaluation in vitro (IMSE system) was used to study the deposition properties of apatite formation on the surface of biphasic calcium phosphate porous ceramic (BCP) from static and dynamic r-SBF. Results showed that apatite formed on the surface of BCP from static and dynamic r-SBF differed between each other. In static r-SBF, ions were transferred by diffusion, which could not compensate the consuming of calcium ions, and mist apatite layer was formed on the surface of samples. But in the dynamic r-SBF, simulated fluid was adjusted precisely and flowed forcedly, the concentrations of ions were homogeneous; with the compensation of ions, calcium and phosphate were supersaturated, and the free energy of apatite formation was negative, bone-like apatite sheets were formed on the surface of samples.


Author(s):  
Megha Mahabole ◽  
Manjushree Bahir ◽  
Rajendra Khairnar

Abstract: In this study, in-vitro bioactivity of manganese blended hydroxyapatite (Mn-HAp) pellets is carried out using simulated body fluid (SBF) solution. The incubated Mn-HAp samples are characterized by XRD, FTIR and SEM/EDAX. Dielectric and photoluminescence properties of Mn-HAp samples are studied as a function of incubation period in SBF. XRD profiles show that hexagonal apatite structure remains intact after partial replacement of calcium ions by manganese ions and even after incubation. The change in absorption due to phosphate group, depicted in FTIR spectra, for incubated samples confirms growth of apatite on Mn-HAp surface. SEM/ EDAX studies suggest that Mn-HAp surface promotes the growth of apatite without changing its structure due to apatite nucleation and growth on the surface of Mn-HAp. The value of dielectric constant of Mn-HAp increases after incubation. Increase in period of immersion in m-SBF leads to decrease in dielectric constant of manganese exchanged hydroxyapatite. The photoluminescence (PL) study reveals that the Mn-HAp can be used stable and efficient blue luminescent material.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5120
Author(s):  
Mamiko Yamashita ◽  
Yoshiaki Nomura ◽  
Misao Ishikawa ◽  
Shinji Shimoda ◽  
Nobuhiro Hanada

Calcification plays an important role in the human body in maintaining homeostasis. In the human body, the presence of a high amount of oxidized low-density lipoprotein (ox-LDL) is a consistent feature of the local areas that are common sites of ectopic calcification, namely dental calculus, renal calculus, and the areas affected by arteriosclerosis. Hence, ox-LDL may have some effect on calcification. Scanning electron microscopy (SEM) observation revealed a high amount of amorphous calcium phosphate (ACP) when ox-LDL was included in the solution. In the in vitro experiment, the highest amount of precipitation of calcium phosphate was observed in the solution containing ox-LDL compared to the inclusion of other biomaterials and was 4.2 times higher than that of deionized water for 4.86 mM calcium and 2.71 mM phosphate. The morphology of calcium phosphate precipitates in the solution containing ox-LDL differed from that of the precipitates in solutions containing other biomaterials, as determined by transmission electron microscopy (TEM). Through the time course observation of the sediments using TEM, it was observed that the sediments changed from spherical or oval shape to a thin film shape. These results indicate that sediments acquired a long-range order array, and the phase transitioned from non-crystalline to crystalline with an increased time and density of ACP. Thus, it is concluded that ox-LDL promoted ACP precipitation and it plays an important role in ectopic calcification.


2010 ◽  
Vol 105 (3) ◽  
pp. 384-392 ◽  
Author(s):  
Ossama Allam ◽  
Diane Bahuaud ◽  
Sylviane Taché ◽  
Nathalie Naud ◽  
Denis E. Corpet ◽  
...  

Red meat intake is associated with an increased risk of colorectal cancer. We have previously shown that haemin, Hb and red meat promote carcinogen-induced preneoplastic lesions, aberrant crypt foci (ACF), in the colon of rats. We have also shown that dietary calcium phosphate inhibits haemin-induced promotion and normalises faecal lipoperoxides and cytotoxicity. Unexpectedly, high-calcium phosphate control diet-fed rats had more preneoplastic lesions in the colon than low-Ca control diet-fed rats. The present study was designed to find a Ca supplementation with no adverse effect, by testing several doses and types of Ca salts. Onein vitrostudy and two short-term studies in rats identified calcium carbonate as the most effective Ca salt to bind haemin vitroand to decrease faecal biomarkers previously associated with increased carcinogenesis: faecal water cytotoxicity and thiobarbituric acid-reactive substances. A long-term carcinogenesis study in dimethylhydrazine-injected rats demonstrated that a diet containing 100 μmol/g calcium carbonate did not promote ACF, in contrast with a previously tested calcium phosphate diet. The results suggest that calcium carbonate, and not calcium phosphate, should be used to reduce haem-associated colorectal cancer risk in meat eaters. They support the concept that the nature of the associated anion to a protective metal ion is important for chemoprevention.


2007 ◽  
Vol 352 ◽  
pp. 305-309
Author(s):  
Kyosuke Ueda ◽  
Takayuki Narushima ◽  
Tomoyuki Katsube ◽  
Hiroshi Kawamura ◽  
Takashi Goto

Calcium phosphate coating films were fabricated on mirror-polished or blast-treated titanium substrates using radio-frequency (RF) magnetron sputtering and they were evaluated in vitro. Immersion tests for the films were conducted using phosphate-buffered saline (PBS(-)), and apatite formation and the elution of calcium ions from the films were investigated. The bonding strengths between the calcium phosphate films and titanium substrates before and after the immersion tests were evaluated. After the immersion tests, a decrease in the bonding strength was observed for the coating films on the mirror-polished titanium substrates, while that for the blast-treated titanium substrates was almost the same as that before the immersion tests.


2012 ◽  
Vol 18 (4) ◽  
pp. 829-839 ◽  
Author(s):  
Claudia Ercole ◽  
Paola Bozzelli ◽  
Fabio Altieri ◽  
Paola Cacchio ◽  
Maddalena Del Gallo

AbstractThis study highlights the role of specific outer bacterial structures, such as the glycocalix, in calcium carbonate crystallizationin vitro. We describe the formation of calcite crystals by extracellular polymeric materials, such as exopolysaccharides (EPS) and capsular polysaccharides (CPS) isolated fromBacillus firmusandNocardia calcarea. Organic matrices were isolated from calcifying bacteria grown on synthetic medium—in the presence or absence of calcium ions—and their effect on calcite precipitation was assessed. Scanning electron microscopy observations and energy dispersive X-ray spectrometry analysis showed that CPS and EPS fractions were involved in calcium carbonate precipitation, not only serving as nucleation sites but also through a direct role in crystal formation. The utilization of different synthetic media, with and without addition of calcium ions, influenced the biofilm production and protein profile of extracellular polymeric materials. Proteins of CPS fractions with a molecular mass between 25 and 70 kDa were overexpressed when calcium ions were present in the medium. This higher level of protein synthesis could be related to the active process of bioprecipitation.


2012 ◽  
Vol 727-728 ◽  
pp. 1170-1174 ◽  
Author(s):  
J.M. Fernandes ◽  
W.T. Coelho ◽  
Mônica Beatriz Thürmer ◽  
Rafaela Silveira Vieira ◽  
Luis Alberto Santos

The calcium phosphate cements (CPCs) have attracted great interest for use in orthopedics and dentistry as replacements for damaged parts of the skeletal system,showing good biocompatibility and osseointegration. These characteristics allow its use as a bone graft.Several studies in literature have shown that the addition of polymeric additives has a strong influence on the mechanical properties of cement. The low mechanical strength is the main impediment to a broader use of calcium phosphate bone cement (CPCs) as implant material. The aim of this work was evaluate the strength of a CPC based on α-tricalcium phosphate, with polymeric additions. CPC was synthesized and sodium alginate were added (1%, 2% and 3% by weight) and ammonium polyacrylate (3%; dispersant) in aqueous solution. Specimens were molded and evaluated for density, pH, porosity, in vitro test (Simulated Body Fluid),crystalline phases and mechanical strength. The results show the increase of the mechanical properties of cement when added with sodium alginate and dispersant.


Sign in / Sign up

Export Citation Format

Share Document