scholarly journals THERMAL BEHAVIOR OF SINGLE-LEAF WALLS FOR BUILDINGS, MADE WITH LIGHTWEIGHT CERAMIC CLAY BRICKS

2017 ◽  
Vol 18 (2) ◽  
Author(s):  
M.C. JUÁREZ ◽  
M.P. MORALES ◽  
P. MUÑOZ ◽  
M.A. MENDÍVIL

<p>In recent years, several studies about factors influencing the heat transfer in single-leaf walls composed by lightweight ceramic bricks of large format have been made, in order to reduce energy losses. Separate works have highlighted the relevance of some parts composing the wall such as the different types of internal voids in the brick, different types of tongue and groove system and different types of horizontal joint. This paper seeks to integrate these studies in order to give an overview of factors that influence the heat transfer and study the importance of each one of them, from an energy point of view. For this purpose, the influence of every factor in the equivalent thermal transmittance of the external walls of building is compared.</p><p>It is remarkable that a single-leaf wall built with a geometrically optimized brick and thin horizontal joint gives masonry wall many significant advantages, because the amount of heat flux dissipated through the horizontal mortar joint is greatly reduced. Better insulated walls mean that there is less need to use home heating and cooling systems. This means less energy consumption and a proportional decrease in GHG emissions, in line with the objectives for 2020 set in the EEP.</p>

1997 ◽  
Vol 3 (3) ◽  
pp. 149-161 ◽  
Author(s):  
A. Escarpa ◽  
M.C. González

In recent years the discovery of the starch fraction called resistant starch (RS) has lead to numerous investigations. The nature of this fraction is very heterogeneous, and it comprises different types of resistant starches. From a technological point of view, RS type III or retrograded starch is the most important fraction. This resistant starch is formed after heating and cooling processes which therefore may occur in numerous fresh foods and foodstuffs. This brief review describes the gela tinization and retrogradation, which occur during heating and cooling, involved in the formation of resistant starch. The influence on RS formation of technological processes used in the manu facture of cereals has been studied as well as the influence of certain treatments used in legumes. In addition, the interactions between starch and nutrients such as proteins, lipids and sugars have also been studied. Recently, a high pressure autoclave has been used in a gelatinization system, which allows a better technological control and an increase in RS yields in comparison to conven tional systems.


Author(s):  
Xin Liu ◽  
Mhamed Boutaous ◽  
Shihe Xin

A numerical model, coupling radiative and conductive heat transfer in a polymer powder bed and providing a local temperature field, is proposed. To simulate the polymer sintering by laser heating as in additive manufacturing, a double-lines scanning of a laser beam over a thin layer of polymer powder is studied. An effective volumetric heat source, using a modified Monte Carlo method, is estimated from laser radiation scattering and absorption in a semi-transparent polymer powder bed. In order to quantify the laser-polymer interaction, the heating and cooling of the material is modeled and simulated with different types heat sources by both finite element method (FEM) and discrete element method (DEM). To highlight the importance of introducing the semi-transparent behavior of such materials and in order to validate our model, the results are compared with works of other researchers taken from literatures.


2019 ◽  
Author(s):  
Heba Abdel Wahed Sayed

A collection of 30 clay oil lamps from Gunther Grimm's excavations in 1973 in the Western necropolis of Alexandria has been classified by Safaa Samir Abu Al Yazid from Tanta University and found to represent 12 different types ranging in time from the Hellenistic to the late Roman periods in Egypt's ancient history. The present paper looks at this collection from the point of view of the symbolic significance of the decorative motifs used in their decoration. These motifs— figural, floral and geometric—had obvious symbolic meaning to their users and signified more than a simple belief in certain deities. They also reflected Roman Egyptian culture.


Author(s):  
Peter Rez

Most of the energy used by buildings goes into heating and cooling. For small buildings, such as houses, heat transfer by conduction through the sides is as much as, if not greater than, the heat transfer from air exchanges with the outside. For large buildings, such as offices and factories, the greater volume-to-surface ratio means that air exchanges are more significant. Lights, people and equipment can make significant contributions. Since the energy used depends on the difference in temperature between the inside and the outside, local climate is the most important factor that determines energy use. If heating is required, it is usually more efficient to use a heat pump than to directly burn a fossil fuel. Using diffuse daylight is always more energy efficient than lighting up a room with artificial lights, although this will set a limit on the size of buildings.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3298
Author(s):  
Gianpiero Colangelo ◽  
Brenda Raho ◽  
Marco Milanese ◽  
Arturo de Risi

Nanofluids have great potential to improve the heat transfer properties of liquids, as demonstrated by recent studies. This paper presents a novel idea of utilizing nanofluid. It analyzes the performance of a HVAC (Heating Ventilation Air Conditioning) system using a high-performance heat transfer fluid (water-glycol nanofluid with nanoparticles of Al2O3), in the university campus of Lecce, Italy. The work describes the dynamic model of the building and its heating and cooling system, realized through the simulation software TRNSYS 17. The use of heat transfer fluid inseminated by nanoparticles in a real HVAC system is an innovative application that is difficult to find in the scientific literature so far. This work focuses on comparing the efficiency of the system working with a traditional water-glycol mixture with the same system that uses Al2O3-nanofluid. The results obtained by means of the dynamic simulations have confirmed what theoretically assumed, indicating the working conditions of the HVAC system that lead to lower operating costs and higher COP and EER, guaranteeing the optimal conditions of thermo-hygrometric comfort inside the building. Finally, the results showed that the use of a nanofluid based on water-glycol mixture and alumina increases the efficiency about 10% and at the same time reduces the electrical energy consumption of the HVAC system.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3955
Author(s):  
Yonghan Ahn ◽  
Hanbyeol Jang ◽  
Junghyon Mun

The purpose of this study is to compare the load calculation results by a model using the air changes per hour (ACH) method and a model using an airflow network (AFN) and to ascertain what causes the difference between the two models. In the basic case study, the difference in the heat transfer distribution of the model in the interior space was investigated. The most significant difference between the two models is the heat transfer that results from infiltration. Parameter analysis was performed to investigate the relationship between the difference and the environmental variables. The result shows that the greater the difference is between the air temperature inside the balcony and the outdoor air temperature, and the greater the air flows from the balcony to the residential area, and the greater the heating and cooling load difference occurs. The analysis using the actual weather files of five domestic cities in South Korea rather than a virtual case shows that the differences are not so obvious when the wind blows at a constant speed throughout the year, but are dominant when the wind does not blow during the night and is stronger alongside the occurrence of sunlight during the day.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 58
Author(s):  
Andraž Bradeško ◽  
Lovro Fulanović ◽  
Marko Vrabelj ◽  
Aleksander Matavž ◽  
Mojca Otoničar ◽  
...  

Despite the challenges of practical implementation, electrocaloric (EC) cooling remains a promising technology because of its good scalability and high efficiency. Here, we investigate the feasibility of an EC cooling device that couples the EC and electromechanical (EM) responses of a highly functionally, efficient, lead magnesium niobate ceramic material. We fabricated multifunctional cantilevers from this material and characterized their electrical, EM and EC properties. Two active cantilevers were stacked in a cascade structure, forming a proof-of-concept device, which was then analyzed in detail. The cooling effect was lower than the EC effect of the material itself, mainly due to the poor solid-to-solid heat transfer. However, we show that the use of ethylene glycol in the thermal contact area can significantly reduce the contact resistance, thereby improving the heat transfer. Although this solution is most likely impractical from the design point of view, the results clearly show that in this and similar cooling devices, a non-destructive, surface-modification method, with the same effectiveness as that of ethylene glycol, will have to be developed to reduce the thermal contact resistance. We hope this study will motivate the further development of multifunctional cooling devices.


Author(s):  
Cengiz Camci ◽  
Boris Glezer

The liquid crystal thermography can be successfully used in both transient and steady-state heat transfer experiments with excellent spatial resolution and good accuracy. Although most of the past liquid crystal based heat transfer studies are reported in the stationary frame, measurements from the rotating frame of turbomachinery systems exist The main objective of the present investigation is to determine the influence of rotation on the color calibration of encapsulated liquid crystals sprayed on the flat surface of a rotating aluminum disk. The investigation is performed for a rotational speed range from 0 rpm to 7500 rpm using three different liquid crystal coatings displaying red at 30, 35 and 45° C, under stationary conditions. An immediate observation from the present study is that the color response of liquid crystals is strongly modified by the centrifugal acceleration of the rotating environment. It is consistently and repeatedly observed that the hue versus temperature curve is continuously shifted toward lower temperatures by increasing rotational speed. The relative shift of the display temperature of the green can be as high as 7°C at 7500 rpm when compared to the temperature of the green observed under stationary conditions. The present study shows that relative shift of the liquid crystal color has a well-defined functional dependency to rotational speed. The shift is linearly proportional to the centrifugal acceleration. It is interesting to note that the individual shift curves of the green for all three liquid crystal coatings collapse into a single curve when they are normalized with respect to their own stationary green values. When the color attribute is selected as “intensity” instead of “hue”, very similar shifts of the temperature corresponding to the intensity maximum value appearing around green is observed. An interpretation of the observed color shift is made from a thermodynamics energy balance point of view.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 148 ◽  
Author(s):  
Nur Irmawati Om ◽  
Rozli Zulkifli ◽  
P. Gunnasegaran

The influence of utilizing different nanofluids types on the liquid cold plate (LCP) is numerically investigated. The thermal and fluid flow performance of LCP is examined by using pure ethylene glycol (EG), Al2O3-EG and CuO-EG. The volume fraction of the nanoparticle for both nanofluid is 2%. The finite volume method (FVM) has been used to solved 3-D steady state, laminar flow and heat transfer governing equations. The presented results indicate that Al2O3-EG able to provide the lowest surface temperature of the heater block followed by CuO-EG and EG, respectively. It is also found that the pressure drop and friction factor are higher for Al2O3-EG and CuO-EG compared to the pure EG.


2019 ◽  
Vol 13 ◽  
pp. 04020
Author(s):  
Giovan Battista Mattii ◽  
Eleonora Cataldo ◽  
Linda Salvi ◽  
Sofia Sbraci ◽  
Francesca Paoli ◽  
...  

In the early stages of planting, the shelter can provide for young vines protection against damage of various kinds. Despite their widespread use, few surveys have been devoted to the study of innovative shelter types and the possible influence of these protections on the physiology and development of plants. In the present experiment, which took place in 2017 in a Tuscan winery, the effects of vine protections by the company OSO (Prato) on single leaf gas exchanges and on the shoot growth in the first year of planting were studied. Three types of shelters with a circular section (completely perforated, partially perforated and closed) have been compared with the traditional full-wall shelters with square section. During the growing season, sprout growth measures, leaf area, leaf gas exchanges and water potential were carried out on the young vines. At the end of the season, shoots were sampled to measure the dry matter accumulated during the season. Among the shelters taken into consideration, it emerges that the completely perforated type guarantees the best development, with differences that are almost always significant for most of the measured parameters with traditional shelters. On the contrary, the closed typology has led to a reduction in growth, in gas exchanges and in water potential. In conclusion, the type completely perforated could constitute a valid alternative to the traditional one because, besides being a useful means for the protection of the vine, it could benefit the development of the root system in the early stages of growth.


Sign in / Sign up

Export Citation Format

Share Document