scholarly journals Processes of electroluminescence degradation of light-emitting structures based on thin silicon oxide and nitride films

Author(s):  
I. A. Romanov ◽  
F. F. Komarov ◽  
L. A. Vlasukova ◽  
I. N. Parkhomenko ◽  
N. S. Kovalchuk

SiO2 /Si, SiN1.2/SiO2 /Si and SiO2 /SiN0.9/SiO2 /Si structures have been fabricated by chemical vapor deposition and thermal oxidation of silicon. The elemental composition and thicknesses of dielectric layers have been studied using Rutherford backscattering spectroscopy, scanning electron microscopy, and spectral ellipsometry. The electroluminescence (EL) of the samples has been investigated in the “electrolyte–dielectric–semiconductor” system at a positive bias voltage applied to the silicon substrate. An intense band with maxima at 1.9 eV appears on the EL spectra of the SiO2 /Si sample, while the EL spectra of the SiN1.2/SiO2 /Si and SiO2 /SiN0.9/SiO2 /Si samples are characterized by the presence of bands with the maximum values of 1.9, 2.3 and 2.7 eV. The nature of these bands is discussed. Passing a charge in the range of 100–500 mC/ cm2 through the SiO2 /SiN0.9/SiO2 /Si sample, an increase in the EL intensity was recorded in the entire visible range. Passing a charge of 1 C/cm2 through a sample with a three-layer dielectric film resulted in the EL intensity decrease. It can be explained by the upper oxide layer degradation. It has been shown that silicon nitride deposited on top of the SiO2 layer protects the oxide layer from field degradation and premature breakdown. The most stable electroluminescence when exposed to a strong electric field is observed for the structure SiN1.2/SiO2 /Si.

Author(s):  
I. A. Romanov ◽  
L. A. Vlasukova ◽  
F. F. Komarov ◽  
I. N. Parkhomenko ◽  
N. S. Kovalchuk ◽  
...  

Oxide-nitride-oxide-silicon (SiO2/SiN0.9/SiO2/Si) structures have been fabricated by chemical vapor deposition. The elemental composition and light emission properties of “SiO2/SiN0.9/SiO2/Si” structures have been studied using Rutherford backscattering spectroscopy (RBS), photo- and electroluminescence (Pl, El). The RBS measurements has shown the presence of an intermediate silicon oxynitride layers at the SiO2–SiN0.9 interfaces.It has been shown that the photoluminescence of the SiO2/SiN0.9/SiO2/Si structure is due to the emission of a SiN0.9 layer, and the electroluminescence is attributed to the emission of silicon oxide and oxynitride layers. A broad intense band with a maximum at 1.9 eV dominates the Pl spectrum. This band attributed to the radiative recombination of excited carriers between the band tail states of the SiN0.9 layer. The origin of the less intense Pl band at 2.8 eV is associated with the presence  of nitrogen defects in the silicon nitride.El was excited in the electrolyte-dielectric-semiconductor system. The electric field strength in the SiO2 layers reached 7–8 MV/cm and exceeded this parameter in nitride layer nearly four times. The electrons accelerating in electric field of 7–8 MV/cm could heat up to energies more than 5 eV. It is sufficient for the excitation of luminescence centres in the silicon oxide and oxynitride layers. The SiO2/SiN0.9/SiO2/Si composition El bands with quantum energies of 1.9 and 2.3 eV are related to the presence of silanol groups (Si–OH) and three-coordinated silicon atoms (≡Si•) in the silicon oxide layers. The El band with an energy of 2.7 eV is attributed to the radiative relaxation of silylene (O2=Si:) centers in the silicon oxynitride regions. It is observed the least reduction of this band intensity under the influence of strong electric fields after a charge flow  of 1–3 C/cm2.


2019 ◽  
Vol 127 (11) ◽  
pp. 769
Author(s):  
В.Н. Кручинин ◽  
Т.В. Перевалов ◽  
Г.Н. Камаев ◽  
С.В. Рыхлицкий ◽  
В.А. Гриценко

Abstract The optical properties of amorphous nonstoichiometric silicon oxide (SiO_ x ) films of variable composition ( x = 0 . 62–1 . 92) formed by plasma-enhanced chemical vapor deposition are studied in the spectral range of 1 . 12–4 . 96 eV. Spectral ellipsometry showed that the refractive index dispersion character allows one to assign the formed SiO_ x films to silicon-like films, dielectrics, or intermediate-conductivity-type films depending on the content of oxygen in the gas phase during synthesis. A model of the SiO_ x structure for ab initio calculations is proposed and describes well the experimental optical spectra. Ab initio calculations of the dependences of the SiO_ x refractive index and band gap on stoichiometry parameter x are performed.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1053 ◽  
Author(s):  
Chia-Hsun Hsu ◽  
Yang-Shih Lin ◽  
Hsin-Yu Wu ◽  
Xiao-Ying Zhang ◽  
Wan-Yu Wu ◽  
...  

In this study, inorganic silicon oxide (SiOx)/organic silicon (SiCxHy) stacked layers were deposited by a radio frequency inductively coupled plasma chemical vapor deposition system as a gas diffusion barrier for organic light-emitting diodes (OLEDs). The effects of thicknesses of SiOx and SiCxHy layers on the water vapor transmission rate (WVTR) and residual stress were investigated to evaluate the encapsulation capability. The experimental results showed that the lowest WVTR and residual stress were obtained when the thicknesses of SiOx and SiCxHy were 300 and 30 nm, respectively. Finally, different numbers of stacked pairs of SiOx/SiCxHy were applied to OLED encapsulation. The OLED encapsulated with the six-pair SiOx/SiCxHy exhibited a low turn-on voltage and low series resistance, and device lifetime increased from 7 h to more than 2000 h.


2021 ◽  
Vol 129 (5) ◽  
pp. 618
Author(s):  
V.N. Kruchinin ◽  
V.A. Volodin ◽  
S.V. Rykhlitskii ◽  
V.A. Gritsenko ◽  
I.P. Posvirin ◽  
...  

The SiCOH low-k dielectric film was grown on Si substrate using plasma enhanced chemical vapor deposition method. Atomic structure and optical properties of the film were studied with the use of X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) absorption spectroscopy, Raman spectroscopy and ellipsometry. Analysis of XPS data showed that the low-k dielectric film consists of Si-O4 bonds (83%) and Si-SiO3 bonds (17%). In FTIR spectra some red-shift of Si-O-Si valence (stretching) vibration mode frequency was observed in the low-k dielectric film compared with the frequency of this mode in thermally grown SiO2 film. The peaks related to absorbance by C-H bonds were observed in FTIR spectrum. According to Raman spectroscopy data, the film contained local Si-Si bonds and also C-C bonds in the s-p3 and s-p2 hybridized forms. Scanning laser ellipsometry data show that the film is quite homogeneous, homogeneity of thickness is ~ 2.5%, and homogeneity of refractive index is ~ 2%. According to analysis of spectral ellipsometry data, the film is porous (porosity is about 24%) and contains clusters of amorphous carbon (~ 7%).


2005 ◽  
Vol 879 ◽  
Author(s):  
Scott K. Stanley ◽  
John G. Ekerdt

AbstractGe is deposited on HfO2 surfaces by chemical vapor deposition (CVD) with GeH4. 0.7-1.0 ML GeHx (x = 0-3) is deposited by thermally cracking GeH4 on a hot tungsten filament. Ge oxidation and bonding are studied at 300-1000 K with X-ray photoelectron spectroscopy (XPS). Ge, GeH, GeO, and GeO2 desorption are measured with temperature programmed desorption (TPD) at 400-1000 K. Ge initially reacts with the dielectric forming an oxide layer followed by Ge deposition and formation of nanocrystals in CVD at 870 K. 0.7-1.0 ML GeHx deposited by cracking rapidly forms a contacting oxide layer on HfO2 that is stable from 300-800 K. Ge is fully removed from the HfO2 surface after annealing to 1000 K. These results help explain the stability of Ge nanocrystals in contact with HfO2.


Author(s):  
zhikun zhang ◽  
lianlian xia ◽  
Lizhao Liu ◽  
Yuwen Chen ◽  
zuozhi wang ◽  
...  

Large surface roughness, especially caused by the large particles generated during both the transfer and the doping processes of graphene grown by chemical vapor deposition (CVD) is always a critical...


Sign in / Sign up

Export Citation Format

Share Document