scholarly journals 12 dBm OCP1dB Millimeter-wave 28 nm CMOS Power Amplifier using Integrated Transformers

2016 ◽  
Vol 11 (2) ◽  
pp. 97-105
Author(s):  
Bernardo Leite ◽  
Eric Kerhervé ◽  
Didier Belot

This paper describes the design of mm-wave integrated transformers and their application within a power amplifier (PA) in a 28 nm CMOS technology. The PA presents a 2-stage common-source differential topology and uses one transformer at the input and another at the output to perform single-ended to differential conversion, as well as another transformer to perform interstage matching. The baluns are sized to provide low insertion losses and high common-mode rejection rate (CMRR) as well as integrating the input and output matching networks. The designed baluns achieve minimum insertion losses better than 0.8 dB and CMRR superior to 27 dB. The output-stage transistors have a measured 1 dB output compression point (OCP1dB) of 10.2 dBm, 10.1 dB gain and peak power added efficiency (PAE) as high as 35%. Thanks to the transformers, the PA presents a compact implementation, occupying only 0.037 mm² on silicon. The fabricated PA achieves 12 dBm OCP1dB, 15.3 dB gain and peak PAE better than 20%.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Muhammad Ovais Akhter ◽  
Najam Muhammad Amin

This research proposed the design and calculations of ultra-low power (ULP) Doherty power amplifier (PA) using 65 nm CMOS technology. Both the main and the peaking amplifiers are designed and optimized using equivalent lumped parameters and power combiner models. The operation has been performed in RF-nMOS subthreshold or triode region to achieve ultra-low power (ULP) and to improve the linearity of the overall power amplifier (PA). The novel design consumes a DC power of 2.1 mW, power-added efficiency (PAE) of 29.8%, operating at 2.4 GHz band, and output referred 1 dB compression point at 4.1dBm. The simulation results show a very good capability of drive current, high gain, and very low input and output insertion losses.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 617 ◽  
Author(s):  
Qingzhen Xia ◽  
Dongze Li ◽  
Jiawei Huang ◽  
Jinwei Li ◽  
Hudong Chang ◽  
...  

In this paper, the influence of the DC-blocking capacitors leveraged in coplanar waveguide (CPW) matching networks is studied. CPW matching networks with series-connected DC-blocking capacitors are less sensitive to capacitance and are adopted in a 28 GHz power amplifier (PA). The PA targeting fifth-generation (5G) phased array is developed in 90 nm silicon-on-insulator complementary-metal-oxide-semiconductor (SOI CMOS) technology. A stacked field-effect-transistor (FET) architecture is elected in the output stage to boost the output power and reduce the die area. The PA with a core area of 0.31 mm2 demonstrates a maximum small signal gain of 13.7 dB and a −3 dB bandwidth of 6.3 GHz (22.9–29.2 GHz). The PA achieves a measured saturated output power (Psat) of 14.4 dBm and a peak power added efficiency (PAE) of 25% for continuous wave signals. At 24/25.6/28 GHz, the PA achieves +7.87/+9.16/+10.7 dBm measured output power and 6.21%/8.11%/10.17% PAE at −25 dBc error vector magnitude(EVM) for a 250 MHz-wide 64-quadrature amplitude modulation (64-QAM). The developed linear PA provides a great potential for low-cost 5G phased array transceivers.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 890
Author(s):  
Kyu-Jin Choi ◽  
Jae-Hyun Park ◽  
Seong-Kyun Kim ◽  
Byung-Sung Kim

A K-band complementary metal-oxide-semiconductor (CMOS) differential cascode power amplifier is designed with the thin-oxide field effect transistor (FET) common source (CS) stage and thick-oxide FET common gate (CG) stage. Use of the thick-oxide CG stage affords the high supply voltage to 3.7 V and enables the high output power. Additionally, simple analysis shows that the gain degradation due to the low cut-off frequency of the thick-oxide CG FET can be compensated by the high output resistance of the thick-oxide FET if the inter-stage node is neutralized. The measured results of the proposed power amplifier demonstrate the saturated output power of the 23.3 dBm with the 31.3% peak power added efficiency (PAE) at 24 GHz frequency. The chip is fabricated in 65-nm low power (LP) CMOS technology and the chip size including all pads is 700 μm × 630 μm.


Author(s):  
Florent Torres ◽  
Eric Kerhervé ◽  
Andreia Cathelin ◽  
Magali De Matos

Abstract This paper presents a 31 GHz integrated power amplifier (PA) in 28 nm Fully Depleted Silicon-On-Insulator Complementary Metal Oxide Semiconductor (FD-SOI CMOS) technology and targeting SoC implementation for 5 G applications. Fine-grain wide range power control with more than 10 dB tuning range is enabled by body biasing feature while the design improves voltage standing wave ratio (VSWR) robustness, stability and reverse isolation by using optimized 90° hybrid couplers and capacitive neutralization on both stages. Maximum power gain of 32.6 dB, PAEmax of 25.5% and Psat of 17.9 dBm are measured while robustness to industrial temperature range and process spread is demonstrated. Temperature-induced performance variation compensation, as well as amplitude-to-phase modulation (AM-PM) optimization regarding output power back-off, are achieved through body-bias node. This PA exhibits an International Technology Roadmap for Semiconductors figure of merit (ITRS FOM) of 26 925, the highest reported around 30 GHz to authors' knowledge.


2021 ◽  
Vol 11 (19) ◽  
pp. 9017
Author(s):  
Jinho Jeong ◽  
Yeongmin Jang ◽  
Jongyoun Kim ◽  
Sosu Kim ◽  
Wansik Kim

In this paper, a high-power amplifier integrated circuit (IC) in gallium-nitride (GaN) on silicon (Si) technology is presented at a W-band (75–110 GHz). In order to mitigate the losses caused by relatively high loss tangent of Si substrate compared to silicon carbide (SiC), low-impedance microstrip lines (20–30 Ω) are adopted in the impedance matching networks. They allow for the impedance transformation between 50 Ω and very low impedances of the wide-gate transistors used for high power generation. Each stage is matched to produce enough power to drive the next stage. A Lange coupler is employed to combine two three-stage common source amplifiers, providing high output power and good input/output return loss. The designed power amplifier IC was fabricated in the commercially available 60 nm GaN-on-Si high electron mobility transistor (HEMT) foundry. From on-wafer probe measurements, it exhibits the output power higher than 26.5 dBm and power added efficiency (PAE) higher than 8.5% from 88 to 93 GHz with a large-signal gain > 10.5 dB. Peak output power is measured to be 28.9 dBm with a PAE of 13.3% and a gain of 9.9 dB at 90 GHz, which corresponds to the power density of 1.94 W/mm. To the best of the authors’ knowledge, this result belongs to the highest output power and power density among the reported power amplifier ICs in GaN-on-Si HEMT technologies operating at the W-band.


Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 69 ◽  
Author(s):  
Taufiq Alif Kurniawan ◽  
Toshihiko Yoshimasu

This paper presents a 2.5-GHz low-voltage, high-efficiency CMOS power amplifier (PA) IC in 0.18-µm CMOS technology. The combination of a dual-switching transistor (DST) and a third harmonic tuning technique is proposed. The DST effectively improves the gain at the saturation power region when the additional gain extension of the secondary switching transistor compensates for the gain compression of the primary one. To achieve high-efficiency performance, the third harmonic tuning circuit is connected in parallel to the output load. Therefore, the flattened drain current and voltage waveforms are generated, which in turn reduce the overlapping and the dc power consumption significantly. In addition, a 0.5-V back-gate voltage is applied to the primary switching transistor to realize the low-voltage operation. At 1 V of supply voltage, the proposed PA has achieved a power added efficiency (PAE) of 34.5% and a saturated output power of 10.1 dBm.


Circuit World ◽  
2020 ◽  
Vol 46 (4) ◽  
pp. 243-248
Author(s):  
Min Liu ◽  
Panpan Xu ◽  
Jincan Zhang ◽  
Bo Liu ◽  
Liwen Zhang

Purpose Power amplifiers (PAs) play an important role in wireless communications because they dominate system performance. High-linearity broadband PAs are of great value for potential use in multi-band system implementation. The purpose of this paper is to present a cascode power amplifier architecture to achieve high power and high efficiency requirements for 4.2∼5.4 GHz applications. Design/methodology/approach A common emitter (CE) configuration with a stacked common base configuration of heterojunction bipolar transistor (HBT) is used to achieve high power. T-type matching network is used as input matching network. To increase the bandwidth, the output matching networks are implemented using the two L-networks. Findings By using the proposed method, the stacked PA demonstrates a maximum saturated output power of 26.2 dBm, a compact chip size of 1.17 × 0.59 mm2 and a maximum power-added efficiency of 46.3 per cent. The PA shows a wideband small signal gain with less than 3 dB variation over working frequency. The saturated output power of the proposed PA is higher than 25 dBm between 4.2 and 5.4 GHz. Originality/value The technology adopted for the design of the 4.2-to-5.4 GHz stacked PA is the 2-µm gallium arsenide HBT process. Based on the proposed method, a better power performance of 3 dB improvement can be achieved as compared with the conventional CE or common-source amplifier because of high output stacking impedance.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 103
Author(s):  
Jiwon Kim ◽  
Changhyun Lee ◽  
Jinho Yoo ◽  
Changkun Park

We present the possibility of a complementary metal-oxide semiconductor (CMOS) power amplifier (PA) using a driver stage composed of p-channel metal oxide semiconductor (PMOS) to enhance linearity. The PMOS driver stage is designed as a cascode structure to adapt the antiphase technique to the CMOS PA. By biasing the common-source transistor of the driver stage at the subthreshold region, we obtain a gm3 value with a positive sign to cancel out the negative gm3 of the power stage, thereby enhancing the linearity. We also investigate the effect of the bias of the cascode transistor of the driver stage on third-order intermodulation distortion and amplitude-to-phase distortion. Consequently, we show that the PMOS driver stage itself acts as a pre-distorter of the power stage. To verify the possibility of the PMOS driver stage and the proposed biasing method for the antiphase technique, we design a 2.42 GHz PA using a 180 nm RFCMOS process for wireless local area network applications. We obtain a measured maximum linear output power of 21.5 dBm with a 23.4% power-added efficiency and an error vector magnitude of 3.14%. We use an 802.11 n modulated signal with 64-quadrature amplitude modulation (QAM) (MCS7) at 65 Mb/s.


2007 ◽  
Vol 16 (04) ◽  
pp. 627-639 ◽  
Author(s):  
VARAKORN KASEMSUWAN ◽  
WEERACHAI NAKHLO

A simple 1.5 V rail-to-rail CMOS current conveyor is presented. The circuit is developed based on a complementary source follower with a common-source output stage. The circuit is designed using a 0.13 μm CMOS technology and HSPICE is used to verify the circuit performance. The current conveyor exhibits low impedance at terminal X (7.2 Ω) and can drive ± 0.6 V to the 300 Ω with the total harmonic distortion of 0.55% at the operating frequency of 3 MHz. The voltage transfer error (between the Y and X terminals) and current transfer error (between the X and Y terminals) are small (-0.2 dB). The power dissipation and bandwidth are 532 μW and over 300 MHz, respectively.


Sign in / Sign up

Export Citation Format

Share Document