Comparative analysis of engine running performance with and without thermostat

2021 ◽  
Vol 4 (1) ◽  
pp. 047-053
Author(s):  
Albert K. Arkoh ◽  
Esther B. Kyere ◽  
Isaac Edunyah

The rate of removal of internal combustion (IC) engine thermostat when engines are imported to Ghana and other part of African continent is alarming. Such phenomenon calls for an experiment to compare the performance of IC engines imported here in Ghana running with and without engine thermostat. The analysis was done by determine engine performance characteristic such as engine torque, indicated power (Ip), brake power (bp), frictional power (fp), fuel consumption, exhaust gas temperature (EGT) as well as exhaust emission at engine speed of 1500 rpm for engine running with thermostat (WT) and without thermostat (WOT). Descriptive statistics and analysis of variance (ANOVA) were done using GenStat software (VSN International, 2021). Statistical significance was carried out at p≤0.05. The best fuel mean value of 103 ml was recorded for engine condition WT at EGT of 283.2 °C while fuel consumed for engine condition WOT was 170 ml at EGT of 155.4 °C. The recorded mean exhaust emission gases for Ex, O2, CO, H2S were 13.2%, 16.2%, 1000 ppm and 35.2 ppm and 0%, 18.38%, 393.2 ppm and 0.4 ppm for engine condition WOT and WT respectively. There was significant difference (p≤0.05) in mean values of EGT, Fuel consumption and exhaust emissions for engine condition WOT with the exception of O2. The removal of engine thermostat affect engine working temperature which result in incomplete combustion, high fuel consumption and high exhaust emissions.

2021 ◽  
Vol 8 (1) ◽  
pp. H16-H20
Author(s):  
A.V.N.S. Kiran ◽  
B. Ramanjaneyulu ◽  
M. Lokanath M. ◽  
S. Nagendra ◽  
G.E. Balachander

An increase in fuel utilization to internal combustion engines, variation in gasoline price, reduction of the fossil fuels and natural resources, needs less carbon content in fuel to find an alternative fuel. This paper presents a comparative study of various gasoline blends in a single-cylinder two-stroke SI engine. The present experimental investigation with gasoline blends of butanol and propanol and magnesium partially stabilized zirconium (Mg-PSZ) as thermal barrier coating on piston crown of 100 µm. The samples of gasoline blends were blended with petrol in 1:4 ratios: 20 % of butanol and 80 % of gasoline; 20 % of propanol and 80 % of gasoline. In this work, the following engine characteristics of brake thermal efficiency (BTH), specific fuel consumption (SFC), HC, and CO emissions were measured for both coated and non-coated pistons. Experiments have shown that the thermal efficiency is increased by 2.2 % at P20. The specific fuel consumption is minimized by 2.2 % at P20. Exhaust emissions are minimized by 2.0 % of HC and 2.4 % of CO at B20. The results strongly indicate that the combination of thermal barrier coatings and gasoline blends can improve engine performance and reduce exhaust emissions.


2020 ◽  
Vol 182 (3) ◽  
pp. 54-58
Author(s):  
Andrzej Ziółkowski ◽  
Paweł Fuć ◽  
Piotr Lijewski ◽  
Łukasz Rymaniak ◽  
Paweł Daszkiewicz ◽  
...  

Road transport holds for the largest share in the freight transport sector in Europe. This work is carried out by heavy vehicles of various types. It is assumed that, in principle, transport should take place on the main road connections, such as motorways or national roads. Their share in the polish road infrastructure is not dominant. Rural and communal roads roads are the most prevalent. This fact formed the basis of the exhaust emissions and fuel consumption tests of heavy vehicles in real operating conditions. A set of vehicles (truck tractor with a semi-trailer) meeting the Euro V emission norm, transporting a load of 24,800 kg, was selected for the tests. The research was carried out on an non-urban route, the test route length was 22 km. A mobile Semtech DS instrument was used, which was used to measure the exhaust emissions. Based on the obtained results, the emission characteristics were determined in relation to the operating parameters of the vehicles drive system. Road emission, specific emission and fuel consumption values were also calculated.


2019 ◽  
Vol 123 (1261) ◽  
pp. 340-355 ◽  
Author(s):  
S. M. Choi ◽  
S. Kim ◽  
R. S. Myong ◽  
W. Kim

ABSTRACTInfrared signal measurements from a micro-turbojet engine are conducted to understand the characteristics of the engine performance and the infrared signal by varying the exhaust nozzle configuration. A cone type nozzle and five rectangle type nozzles whose aspect ratios vary from one to five are used for this experimental work. As a result, it is confirmed that the thrust and the fuel consumption rate of the engine do not change greatly by varying the exhaust nozzle shape. In the case of the aspect ratio of 5, the specific fuel consumption of the engine is increased by about 3% compared to the reference cone nozzle, but the infrared signal can be reduced by up to 14%. As a result of measuring the temperature distribution of the plume gas, the correlation of infrared signal with plume gas temperature distribution can be understood. In the case of a cone shape, the distribution of plume gas formed to circular shape, and the high-temperature core region of plume gas continued to develop farther to the downstream. However, the temperature distribution was maintained in the rectangular shape as the aspect ratio increased, and the average temperature decreased sharply. As the aspect ratio increases, the plume spreads more widely.


2017 ◽  
Vol 64 (1) ◽  
pp. 111-121 ◽  
Author(s):  
S. Senthilraja ◽  
KCK. Vijayakumar ◽  
R. Gangadevi

Abstract This article reports the effects of CuO/water based coolant on specific fuel consumption and exhaust emissions of four stroke single cylinder diesel engine. The CuO nanoparticles of 27 nm were used to prepare the nanofluid-based engine coolant. Three different volume concentrations (i.e 0.05%, 0.1%, and 0.2%) of CuO/water nanofluids were prepared by using two-step method. The purpose of this study is to investigate the exhaust emissions (NOx), exhaust gas temperature and specific fuel consumption under different load conditions with CuO/water nanofluid. After a series of experiments, it was observed that the CuO/water nanofluids, even at low volume concentrations, have a significant influence on exhaust emissions. The experimental results revealed that, at full load condition, the specific fuel consumption was reduced by 8.6%, 15.1% and 21.1% for the addition of 0.05%, 0.1% and 0.2% CuO nanoparticles with water, respectively. Also, the emission tests were concluded that 881 ppm, 853 ppm and 833 ppm of NOx emissions were observed at high load with 0.05%, 0.1% and 0.2% volume concentrations of CuO/water nanofluids, respectively.


2017 ◽  
Vol 21 (1 Part B) ◽  
pp. 555-566 ◽  
Author(s):  
Feyyaz Candan ◽  
Murat Ciniviz ◽  
Ilker Ors

In this study, methanol in ratios of 5-10-15% were incorporated into diesel fuel with the aim of reducing harmful exhaust gasses of Diesel engine, di-tertbutyl peroxide as cetane improver in a ratio of 1% was added into mixture fuels in order to reduce negative effects of methanol on engine performance parameters, and isobutanol of a ratio of 1% was used as additive for preventing phase separation of all mixtures. As results of experiments conducted on a single cylinder and direct injection Diesel engine, methanol caused the increase of NOx emission while reducing CO, HC, CO2, and smoke opacity emissions. It also reduced torque and power values, and increased brake specific fuel consumption values. Cetane improver increased torque and power values slightly compared to methanol-mixed fuels, and reduced brake specific fuel consumption values. It also affected exhaust emission values positively, excluding smoke opacity. Increase of injector injection pressure affected performances of methanol-mixed fuels positively. It also increased injection pressure and NOx emissions, while reducing other exhaust emissions.


Author(s):  
E. Movahednejad ◽  
F. Ommi ◽  
M. Hosseinalipour ◽  
O. Samimi

For spark ignition engines, the fuel-air mixture preparation process is known to have a significant influence on engine performance and exhaust emissions. In this paper, an experimental study is made to characterize the spray characteristics of an injector with multi-disc nozzle used in the engine. The distributions of the droplet size and velocity and volume flux were characterized by a PDA system. Also a model of a 4 cylinder multi-point fuel injection engine was prepared using a fluid dynamics code. By this code one-dimensional, unsteady, multiphase flow in the intake port has been modeled to study the mixture formation process in the intake port. Also, one-dimensional air flow and wall fuel film flow and a two-dimensional fuel droplet flow have been modeled, including the effects of in-cylinder mixture back flows into the port. The accuracy of model was verified using experimental results of the engine testing showing good agreement between the model and the real engine. As a result, predictions are obtained that provide a detailed picture of the air-fuel mixture properties along the intake port. A comparison was made on engine performance and exhaust emission in different fuel injection timing for 2600 rpm and different loads. According to the present investigation, optimum injection timing for different engine operating conditions was found.


Author(s):  
Amir Ridhuan ◽  
Shahrul Azmir Osman ◽  
Mas Fawzi ◽  
Ahmad Jais Alimin ◽  
Saliza Azlina Osman

This introductory study comes up with an innovative idea of using Hydroxyl gas as a fuel performance enhancer to reduce the natural sources and the overuse of fossil fuel resulting in increased pollution levels. Many researchers have used HHO gas to analyze gasoline and diesel in internal combustion engines. The main challenges of using HHO gas in engines have been identified as system complexity, safety, cost, and electrolysis efficiency. This article focuses on different performance reports and the emission characteristics of a compression ignition engine. As opposed to general diesel, this study found that using HHO gas improved brake power and torque. In all cases, an increase in braking thermal efficiency can be observed. This was due to the presence of hydrogen in HHO gas with higher calorific value than fossil fuels. At the same time, the fuel consumption unit of the engine was reduced, and the combined impact of hydrogen and oxygen helped to achieve complete combustion and improved the combustion capacity of the fuel when HHO gas was injected. The addition of HHO gas also improved the Brake Power (BP), Brake Torque (BT), Brake Specific Fuel Consumption (BSFC), and thermal efficiency while simultaneously reducing CO and HC formation. The rise in CO2 emissions represented the completion of combustion. Therefore, the usage of HHO gas in the Compression Ignition (CI) engine improved the engine performance and exhaust emissions.


2012 ◽  
Vol 24 (1) ◽  
pp. 140
Author(s):  
A. M. Duszewska ◽  
A. Compa ◽  
M. Zelechowska ◽  
A. Piliszek ◽  
A. Rynkowska ◽  
...  

The oviduct provides the environment necessary for the gamete transport, completion of spermatozoa capacitation, oocyte fertilization and the early development of embryos. In cattle, all of these processes take place between Day 0 to 4 of the ovarian cycle (Day 0 is the day of ovulation). In previous studies, temporal changes in the bovine oviduct morphology were evaluated by dividing the ovarian cycle into luteal and follicular phases. In order to understand the relation between the bovine oviduct morphology and processes occurring there, the ovarian cycle has been further divided into four phases: I (Day 0–4), II (Day 5–10), III (Day 11–17) and IV (Day 18–20), with the day of ovulation considered Day 0 (1980 J. Dairy Sci. 63, 155–160). The aim of the study was to evaluate the oviduct morphology of the infundibulum, ampulla and isthmus in 4 phases of the ovarian cycle. Research material comprised cattle oviducts (classified into 1 of the 4 phases of the cycle based on ovarian morphology), dissected into infundibulum, ampulla and isthmus and subsequently sectioned and processed for histological preparations (hematoxylin and eosin, H&E, staining). Diameters of transverse cross-sections of oviduct and its lumen and thickness of tunicas: mucosa, muscularis and serosa were evaluated in relation to the region of oviduct and the phase of ovarian cycle. Values are given in μm. Statistical analysis was carried out by 1-way analysis of variance and comparisons of mean values were made with the Tukey honestly significant difference test (Statgraphics Plus 5); P < 0.05 was considered to reflect the presence of statistical significance. The comparison of the diameters of transverse cross-sections (A) of oviduct and its lumen (B) shows significant statistical differences between ampulla and isthmus within the phases: A-I (4507.26 vs 2524.47), II (4510.53 vs 2540.67), III (4503.28 vs 2534.07), IV (4500.73 vs 2533.90); B-I (4191.10 vs 1950.88), II (4173.63 vs 1986.33), III (4198.53 vs 1966.88) and IV (4192.50 vs 1959.33). There are no differences among 4 phases of the ovarian cycle. The thickness of tunicas muscularis and serosa of infundibulum (I: 26.81 vs 196.85; II: 27.03 vs 201.80; III: 26.22 vs 199.45; IV: 23.97 vs 198.01), ampulla (I: 91.51 vs 214.50; II: 90.72 vs 212.55; III: 88.61 vs 213.30; IV: 89.65 vs 206.28) and isthmus (I: 202.29 vs 216.52; II: 199.24 vs 207.74; III: 200.90 vs 212.38; IV: 200.38 vs 210.86) show only statistically significant differences within the phases, whereas the tunica mucosa shows only statistically significant differences between phases and the term of the height of epithelium at the base of mucosal folds (I: 26.49; II: 25.20; III: 24.14; IV: 29.96) and their apical parts (I: 28.09; II: 26.01; III: 25.45; IV: 30.96). In conclusion, differences in oviduct morphology are mainly region specific, whereas the epithelium morphologically infundibulum, ampulla and isthmus show variation in the 4 phases of the ovarian cycle. Supported by Grant MNiSW N311236137.


Author(s):  
D. W. Hughes ◽  
J. R. Goulburn

SYNOPSIS This paper describes a simple system of controlling exhaust emissions from gasoline engined vehicles, using a coolant-heated fuel vaporiser in the inlet system. The object of complete vaporisation of the fuel is to create a homogeneous inlet charge, giving improved cylinder-to-cylinder distribution and permitting operation with very lean mixtures. This leads to low exhaust emissions of Carbon Monoxide, Hydrocarbons and Nitric Oxides. The effects of vaporisation on the lean limit of operation, exhaust emissions, power output, fuel consumption and optimum spark ignition timing have been investigated, and are discussed in the paper. Results of tests on a 1.6 litre car are also presented. It was found that exhaust emissions were effectively controlled, while vehicle driveability remained acceptable. Engine power was reduced by 25-30%, although fuel consumption was not increased.


Author(s):  
Allan Yao ◽  
Hailin Li ◽  
Xin Shi ◽  
Fuming Xiao ◽  
Pin Zeng

This paper presents the engine performance, combustion process, and exhaust emissions from of a turbocharged spark ignition (SI) WP-10 off-road engine developed to operate on gaseous fuels applicable to a wide range of the higher heating value (HHV) (900 to 1400 BTU). The HHV of the fuels was varied by blending of propane or carbon dioxide (CO2) into natural gas (NG). The developed engine was designed to operate at 1800 rpm and 175 kW. A new method of calculating the specific heat ratio of the bulk gases with the calculated bulk gas temperature and composition was proposed. The specific heat ratio calculated using this method was lower than the value derived from the conventional Log P-Log V method. The application of the specific heat ratio calculated in calculating the heat release process increased the heat release rate (HRR) and the total heat released during combustion. In addition, it also resulted in retarded phasing of CA50 and CA95 defined as the crank angle location when 50% and 95% of total energy was released. The effects of the fuel composition on engine performance, combustion process, and exhaust emissions were experimentally investigated. It achieved a brake thermal efficiency of about 32.8%. The exhaust emissions are in compliance with both EPA and CARB regulations. The addition of propane to NG increased the HRR, accelerated the combustion process, and shortened the combustion duration. This was the result of the quicker flame propagation property of propane. The HRR observed with propane blending was featured with two heat release peaks. The peak HRR observed with 1400 BTU fuel was about 10% higher than that observed with NG only operation. As expected, the blending of CO2 to NG was shown to slow down the combustion process, and retarded the combustion phasing, especially during the completion of combustion.


Sign in / Sign up

Export Citation Format

Share Document