The current state of the problem of predicting spontaneous combustion and explosiveness of sulfide ores and host rocks at a depth of more than 1500 m.

Author(s):  
Z.G. Ufatova

The mining factors of ore fire hazard during mining of the lower horizons of the Oktyabrskiy and Talnakhskiy northern deposits are considered. It is noted that the probability of self-heating of sulfide ores and the sulfide dust’s tendency to spontaneous combustion and explosiveness in certain sections of rich sulfide copper-nickel ores are quite high. The oxidation of sulfide ores occurs continuously due to the absorption of oxygen from the mine atmosphere and is accompanied by the release of heat. The oxidation can be accompanied by intense heating of the ore in mining conditions, with the accumulation of large volumes of broken rock mass for a long time in treatment and preparation workings and with free access of air to the bulk of the ore mass. The processes of ore and rock oxidation are especially intense when their moisture content is 1–4%. When the ore is heated above 35 °C, sulfurous gas (SO2) may be released. The main signs of the above-mentioned oxidative processes’ development and signs of the initial phase of a possible underground endogenous fire are indicated along with a constant increase in the temperature of the air coming from the bottom of the face. It is noted that in case of detecting at least one of the signs of a possible underground endogenous fire’s initial phase, urgent measures are taken to improve the ventilation of this working face, to ensure maximum intensity of shipped ore from the fresh stream and the content of sulfurous gas and hydrogen sulfide and mine air temperature are determined every 4 hours. If after two days on the outgoing stream there is no decrease in the content of sulfur dioxide and air temperature, then it should be considered that an endogenous fire has occurred. Measures for the prevention, localization and elimination of foci of spontaneous combustion are given. As an additional safety measure, it is recommended to moisten the dust, since sulfide dust becomes non-explosive at a moisture content of 9–9,5%, and at a humidity of 10% the dust does not transmit an explosive impulse.

2021 ◽  
Vol 250 ◽  
pp. 526-533
Author(s):  
Andrian Batugin ◽  
Aleksandr Kobylkin ◽  
Valerija Musina

The paper investigates the hypothesis according to which one of the factors influencing the spontaneous combustion of coal-bearing dumps is its geodynamic position, i.e. its location in the geodynamically dangerous zone (GDZ) at the boundary of the Earth crust blocks. This hypothesis is put forward on the basis of scientific ideas about the block structure of the Earth crust and the available statistical data on the location of burning dumps and is studied using computer modeling. A dump located in the area of Eastern Donbass was chosen as the object of research. The simulation results show that the penetration of air into the dump body from the mine through the GDZ, which crosses the mining zone, is possible at an excess pressure of 1000 Pa created by the main ventilation fans. The fire source appearance in the dump body causes an increase in the temperature of the dump mass and becomes a kind of trigger that "turns on" the aerodynamic connection between the dump and the environment, carried out through the GDZ. It is concluded that the establishment of an aerodynamic connection between the mine workings and the dump through the GDZ can be an important factor contributing to the endogenous fire hazard of coal-bearing dumps. The simulation results can be used in the development of projects for monitoring coal-bearing dumps and measures to combat their spontaneous combustion.


2019 ◽  
Vol 29 (10) ◽  
pp. 1346-1358 ◽  
Author(s):  
Sebastian Englart

This study discusses the use of a membrane module for semi-direct evaporative air cooling. A cross-flow membrane module was used to carry out this air treatment process. For such a flow, it was proposed to describe and solve the heat and mass transfer model as a one-dimensional problem. The mathematical model was used to determine the moisture content and air temperature at the outlet from the module and the temperature of the circulating water. Results obtained using the proposed model are in good agreement with the experimental data. The relative error for the air temperature at the module outlet did not exceed 0.5%. For the moisture content, the relative error did not exceed 4%. For the circulating water temperature, the relative error did not exceed 0.6%. This paper also discusses the heating efficiency of the evaporative cooling process. Methods for determining the unit cooling indicator and the energy efficiency ratio are also proposed.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Naifu Cao ◽  
Gang Wang ◽  
Yuntao Liang

In this article, a series of experiments have been carried out to study the spontaneous combustion and oxidation mechanism of coal after water immersion and investigate its tendency to spontaneous combustion, analyze the difficulty of spontaneous combustion of coal samples under different water immersion conditions, and establish a kinetic model of water immersion coal oxidation (taking the Bulianta 12# coal as a case study). They rely on physical oxidation adsorption, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetry, and oil bath heating. SEM has been used to analyze the characteristics of coal pore structure under different water immersion conditions (water-saturated coal samples under different water loss conditions until the coal samples are completely dried); FTIR served to investigate the characteristics of the molecular chemical structure of the coal surface before and after the coal is immersed in water. Through programmed temperature oxidation experiments combined with FTIR analyses and gas chromatographic (GC) analysis of gaseous products, it has been possible to study the changes of molecular structure and gas products on the surface of coal samples at different temperatures and water immersion conditions. The oxidation reaction rate of the 12# coal samples of Shendong Mine’s Bulianta Mine under different water content conditions during the spontaneous combustion process has been quantitatively studied. The difficulty of spontaneous combustion of coal samples has been correspondingly addressed. A kinetic model from the perspective of oxygen consumption has been proposed. Thermogravimetry-differential scanning calorimetry (TG-DSC) has been used to analyze and study the exothermal oxidation process before and after coal immersion. From the perspective of the exothermic intensity of the coal-oxygen reaction, an oxidation kinetic model for immersed coal samples has been developed to qualitatively determine its spontaneous combustion tendency. Results have shown that the increase in the specific surface area increases the risk of spontaneous combustion, and coal samples after soaking and drying have a stronger tendency to spontaneous combustion than raw coal. The moisture content of the coal sample leading to the easiest ignition conditions is 16.05%. Regardless of the moisture content, the critical temperature is maintained at 65–75°C, and the temperature of the left coal in the goaf should be prevented from exceeding this critical value.


Author(s):  
Jeff D. Craven ◽  
Andrew W. Muscha ◽  
R. Chase Harrison ◽  
Markus A. R. Kreitzer ◽  
Robert N. Dean ◽  
...  

The spontaneous combustion of curing hay bales poses serious safety and financial issues to farmers and ranchers across the United States and abroad. The primary cause of this spontaneous combustion is the baling of hay before it has adequately dried and reached a sufficiently low moisture content level. This inadequate drying is primarily due to the farmer allowing the hay to dry in the field after cutting for a given period of time. But unfortunately, this does not always ensure that the hay has sufficiently dried before baling. Spontaneous combustion of hay bales is due to a proliferation of thermophilic bacteria that thrive in a moist and hot environment. If the moisture content of hay is greater than 20%, it provides a suitable environment for mesophilic bacteria, which can heat the hay to as a high as 140°F. Although this is not problematic in and of itself, a 140°F hay bale is a suitable environment for the proliferation of thermophilic bacteria, which can further heat the hay to 170oF. At this temperature, the hay can spontaneous combust, destroying the hay and risking the loss of buildings, equipment, livestock and agricultural workers. To combat this problem, a low-cost, low-power, wireless hay bale status sensor suite has been developed so that the farmer can easily and safely monitor the conditions inside a curing hay bale, to give the farmer time to take action before the bale spontaneously combusts. The battery operated sensor suite has two sensors in contact with the hay inside the bale, a printed circuit board (PCB) moisture content sensor and a discrete temperature sensor. The extremely low-cost of the PCB moisture content sensor is what enables the practicality of the sensor suite. WiFi is used to transmit moisture content and temperature data to the farmer's smartphone when it comes within range. The sensor suite is placed inside the bale at the time of baling. After the bale has fully cured, in four to six weeks, the reusable sensor suite can be removed and used in a new bale.


2013 ◽  
Vol 1 (No. 4) ◽  
pp. 127-138 ◽  
Author(s):  
Duffková Renata

In 2003–2005 in conditions of the moderately warm region of the Třeboň Basin (Czech Republic) the difference between canopy temperature (Tc) and air temperature at 2 m (Ta) was tested as an indicator of grass­land water stress. To evaluate water stress ten-minute averages of temperature difference Tc–Ta were chosen recorded on days without rainfall with intensive solar radiation from 11.00 to 14.00 CET. Water stress in the zone of the major portion of root biomass (0–0.2 m) in the peak growing season (minimum presence of dead plant residues) documented by a sudden increase in temperature difference, its value 5–12°C and unfavourable canopy temperatures due to overheating (> 30°C) was indicated after high values of suction pressure approach­ing the wilting point (1300 kPa) were reached. High variability of temperature difference in the conditions of sufficient supply of water to plants was explained by the amount of dead plant residues in canopy, value of va­pour pressure deficit (VPD), actual evapotranspiration rate (ETA) and soil moisture content. At the beginning of the growing season (presence of dead plant residues and voids) we proved moderately strong negative linear correlations of Tc–Ta with VPD and Tc–Ta with ETA rate and moderately strong positive linear correlations of ETA rate with VPD. In the period of intensive growth (the coverage of dead plant residues and voids lower than 10%) moderately strong linear correlations of Tc–Ta with VPD and multiple linear correlations of Tc–Ta with VPD and soil moisture content at a depth of 0.10–0.40 m were demonstrated.


2018 ◽  
Vol 73 ◽  
pp. 05015
Author(s):  
Witdarko Yus ◽  
Mekiuw Yosehi ◽  
Sri Suryaningsih Ni Luh ◽  
Wahida

One of drying method applied in flour milling industry is pneumatic drying. Various kinds of variable both dried materials and drying process condition strongly influence the quality of drying result. Fineness Modulus (FM) and Water Rate are significant variables in defining the flour quality. The aim of this study is to identify the influence of dryer air temperature on FM and Moisture Content in pneumatic dryer process condition. Both variables have sufficiently big coefficient of determination value; therefore, it can be employed to predict well the fineness modulus and water rate of the flour.


2015 ◽  
Vol 365 ◽  
pp. 77-81 ◽  
Author(s):  
J.V. Silva ◽  
E.M.A. Pereira ◽  
T.H.F. Andrade ◽  
Antônio Gilson Barbosa de Lima

This paper aims to present an experimental study of rough rice (BRSMG CONAI cultivar) drying by using a stationary method. The grain was dried in an oven with air mechanical movement under controlled conditions of velocity, temperature and relative humidity. In order to obtain balanced moisture content, the samples studied were kept at 40 and 70°C. Results of the drying and heating kinetics of the grain during the process are shown and analyzed. It was found that higher drying rate and lower time for drying as higher air temperature (70°C) is used. It can be concluded that the reduction of the moisture content of the grain, is considered very complex and, depending on the method and drying conditions, can substantially provokes breaking and cracks, which reduces final product quality.


2011 ◽  
Vol 139 (2) ◽  
pp. 494-510 ◽  
Author(s):  
Yang Yang ◽  
Michael Uddstrom ◽  
Mike Revell ◽  
Phil Andrews ◽  
Hilary Oliver ◽  
...  

Abstract Historically most soil moisture–land surface impact studies have focused on continents because of the important forecasting and climate implications involved. For a relatively small isolated mountainous landmass in the ocean such as New Zealand, these impacts have received less attention. This paper addresses some of these issues for New Zealand through numerical experiments with a regional configuration of the Met Office Unified Model atmospheric model. Two pairs of idealized simulations with only contrasting dry or wet initial soil moisture over a 6-day period in January 2004 were conducted, with one pair using realistic terrain and the other pair flat terrain. For the mean of the 6 days, the differences in the simulated surface air temperature between the dry and moist cases were 3–5 K on the leeside slopes and 1–2 K on the windward slopes and the central leeside coastal region of the South Island in the afternoon. This quite nonuniform response in surface air temperature to a uniformly distributed soil moisture content and soil type is mainly attributed to modification of the effects of soil moisture by mountains through two different processes: 1) spatial variation in cloud coverage across the mountains ranges leading to more shortwave radiation at ground surface on the leeside slope than the windward slope, and 2) the presence of a dynamically and thermally induced onshore flow on the leeside coast bringing in air with a lower sensitivity to soil moisture. The response of local winds to soil moisture content is through direct or indirect effects. The direct effect is due to the thermal contrast between land and sea/land shown for the leeside solenoidal circulations, and the indirect effect is through the weakening of the upstream blocking of the South Island for dryer soils shown by the weakening and onshore shift of the upstream deceleration and forced ascent of incoming airflow.


1970 ◽  
Vol 50 (3) ◽  
pp. 705-709 ◽  
Author(s):  
L. G. YOUNG

Two trials were conducted involving 44 individually fed growing-finishing pigs to evaluate the effect of corn moisture content and method of processing of corn on performance. Digestible energy values of the diets were determined. When pigs had free access to feed and water, those fed high moisture corn consumed less dry matter and gained less rapidly than those fed artificially dried corn. The digestible energy values of diets containing whole corn were less than those of diets containing rolled or ground corn. The gain/feed ratio for diets containing whole corn was lower in the first trial but similar to other diets in the second trial.


Sign in / Sign up

Export Citation Format

Share Document