scholarly journals Assessment of chromium induced alterations on gut bacterial population of E. eugeniae

2019 ◽  
Vol 11 (1) ◽  
pp. 94-96
Author(s):  
Shefali Gulia ◽  
Jyoti Yadav ◽  
R. K. Gupta

The aim of the present study was to enumerate the diversity of gut bacterial population of epigeic earthworm species, E. eugeniae exposed to heavy metal. Adult earthworms were treated with three different doses (0.06%, 0.13% and 0.19% w/v) of potassium dichromate (K2Cr2O7) for this purpose. The gut samples were serially diluted and inoculated in seven distinct media viz. Jensen's media, King’smedium B base, Burk’s media, Yeast Mannitol Agar media, Vogel- Johnson agar base media, Luria Bertani Broth Miller and Nutrient agar media. Dose dependent decrease in bacterial population was observed in treated worms when compared with control. Maximum percent change (62.59%) in bacterial population was observed in Burk’s media when exposed to 0.19% chromium. The results revealed that chromium alters the microbial population present in gut of earthworms. Therefore, changes in earthworms’ gut microbial community due to soil management practices can also be used as markers of soil fertility and quality.

1988 ◽  
Vol 255 (6) ◽  
pp. R1035-R1040
Author(s):  
R. Hoo-Paris ◽  
M. L. Jourdan ◽  
L. C. Wang ◽  
R. Rajotte

In hypothermia, impairment of metabolic substrate mobilization and utilization may be a factor limiting survival. By use of a newly developed technique, substrate profiles and their regulation by insulin were examined in hypothermic rats (body temperature 19 degrees C) over 24 h. Plasma glucose concentrations increased to approximately 300 mg/dl during cooling and remained high throughout the period of hypothermia. Free fatty acid (FFA) concentration was not altered during cooling or during the first 10 h of hypothermia (approximately 700 mu eq/l) but progressively decreased thereafter, reaching 420 mu eq/l by 20 h. Plasma insulin decreased dramatically during cooling and remained very low (9 +/- 2 microU/ml) during the whole period of hypothermia, reflecting the suppression of insulin secretion by isolated islets at low temperatures. To test he hypothesis that suppression of endogenous insulin secretion may hamper glucose utilization and thus limit survival in hypothermia, exogenous insulin was administered. At doses of 0.1, 0.5, and 1 U/kg intravenously, insulin slowly decreased plasma glucose and FFA. However, at 0.1 and 1 U/kg intraperitoneally, insulin resulted in a dose-dependent decrease in survival time in the hypothermic rat. It is possible that the antilipolytic effect of insulin may have outweighed any beneficial effect of improving glucose utilization in hypothermia.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2022
Author(s):  
Francesca Iommelli ◽  
Viviana De Rosa ◽  
Cristina Terlizzi ◽  
Rosa Fonti ◽  
Rosa Camerlingo ◽  
...  

Notch1 plays a key role in epithelial-mesenchymal transition (EMT) and in the maintenance of cancer stem cells. In the present study we tested whether high levels of activated Notch1 in oncogene-driven NSCLC can induce a reversible shift of driver dependence from EGFR to Notch1, and thus causing resistance to EGFR inhibitors. Adherent cells (parental) and tumor spheres (TS) from NSCLC H1975 cells and patient-derived CD133-positive cells were tested for EGFR and Notch1 signaling cascade. The Notch1-dependent modulation of EGFR, NCID, Hes1, p53, and Sp1 were then analyzed in parental cells by binding assays with a Notch1 agonist, DLL4. TS were more resistant than parental cells to EGFR inhibitors. A strong upregulation of Notch1 and a concomitant downregulation of EGFR were observed in TS compared to parental cells. Parental cell exposure to DLL4 showed a dose-dependent decrease of EGFR and a simultaneous increase of NCID, Hes1, p53, and Sp1, along with the dislocation of Sp1 from the EGFR promoter. Furthermore, an enhanced interaction between p53 and Sp1 was observed in TS. In NSCLC cells, high levels of active Notch1 can promote a reversible shift of driver dependence from EGFR to Notch1, leading to resistance to EGFR inhibitors.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4008
Author(s):  
Carla Cilliers ◽  
Evans M. N. Chirwa ◽  
Hendrik G. Brink

The objective of the study was to gather insight into the metabolism of lead-removing microorganisms, coupled with Pb(II) removal, biomass viability and nitrate concentrations for Pb(II) bioremoval using an industrially obtained microbial consortium. The consortium used for study has proven to be highly effective at removing aqueous Pb(II) from solution. Anaerobic batch experiments were conducted with Luria-Bertani broth as rich growth medium over a period of 33 h, comparing a lower concentration of Pb(II) with a higher concentration at two different nutrient concentrations. Metabolite profiling and quantification were conducted with the aid of both liquid chromatography coupled with tandem mass spectroscopy (UPLC-HDMS) in a “non-targeted” fashion and high-performance liquid chromatography (HPLC) in a “targeted” fashion. Four main compounds were identified, and a metabolic study was conducted on each to establish their possible significance for Pb(II) bioremoval. The study investigates the first metabolic profile to date for Pb(II) bioremoval, which in turn can result in a clarified understanding for development on an industrial and microbial level.


2015 ◽  
Vol 43 (05) ◽  
pp. 915-925 ◽  
Author(s):  
Shou-Lun Lee ◽  
Hsien-Kuang Lee ◽  
Ting-Yu Chin ◽  
Ssu-Chieh Tu ◽  
Ming-Hsun Kuo ◽  
...  

Purple sweet potato leaves (PSPLs) are healthy vegetable that is rich in anti-oxidants. A solution of boiling water extract of PSPL (PSPLE) is believed to be able to prevent obesity and metabolic syndrome in the countryside of Taiwan, but its efficacy has not yet been verified. The purpose of this study was to investigate the possible anti-adipogenesis effect of PSPLE in vitro. PSPLE was used to treat the 3T3-L1 cells, and the effects on cell proliferation and adipogenesis were investigated. The results showed that PSPLE caused a dose-dependent decrease in the cell proliferation of 3T3-L1 preadipocytes, but did not alter the cell viability. In addition, PSPLE induced ERK inactivation in the 3T3-L1 preadipocytes. Furthermore, pre-treatment of confluent 3T3-L1 cells with PSPLE led to reduced lipid accumulation in differentiated 3T3-L1 cells. The inhibition of lipogenesis could result from the PSPLE-induced down-regulation of the expression of the C/EBPα and SREBP-1 transcription factors during 3T3-L1 adipocyte differentiation. These results suggest that PSPLE not only inhibits cell proliferation at an early stage but also inhibits adipogenesis at a later stage of the differentiation program.


2003 ◽  
Vol 47 (12) ◽  
pp. 3917-3925 ◽  
Author(s):  
Andreas H. Groll ◽  
Diana Mickiene ◽  
Vidmantas Petraitis ◽  
Ruta Petraitiene ◽  
Raul M. Alfaro ◽  
...  

ABSTRACT The comparative drug dispositions, urinary pharmacokinetics, and effects on renal function of multilamellar liposomal nystatin (LNYS; Nyotran) and amphotericin B deoxycholate (DAMB; Fungizone) were studied in rabbits. Drug concentrations were determined by high-performance liquid chromatography as total concentrations of LNYS and DAMB. In comparison to a standard dose of 1 mg of DAMB/kg of body weight, therapeutic dosages of LNYS, i.e., 2, 4, and 6 mg/kg, resulted in escalating maximum concentrations (C max) (17 to 56μ g/ml for LNYS versus 3.36 μg/ml for DAMB; P< 0.001) and values for the area under the concentration-time curve from 0 to 24 h (AUC0-24) (17 to 77μ g · h/ml for LNYS versus 12μ g · h/ml for DAMB; P < 0.001) in plasma but a significantly faster total clearance from plasma (0.117 to 0.080 liter/h/kg for LNYS versus 0.055 liter/h/kg for DAMB; P = 0.013) and a ≤8-fold-smaller volume of distribution at steady state (P = 0.002). Urinary drug concentration data revealed a ≥10-fold-higher C max (16 to 10 μg/ml for LNYS versus 0.96μ g/ml for DAMB; P = 0.015) and a 4- to 7-fold-greater AUC0-24 (63 to 35μ g · h/ml for LNYS versus 8.9μ g · h/ml for DAMB; P = 0.015) following the administration of LNYS, with a dose-dependent decrease in the dose-normalized AUC0-24 in urine (P= 0.001) and a trend toward a dose-dependent decrease in renal clearance. Except for the kidneys, the mean concentrations of LNYS in liver, spleen, and lung 24 h after dosing were severalfold lower than those after administration of DAMB (P,<0.002 to <0.001). Less than 1% each of the total dose of LNYS was recovered from the kidneys, liver, spleen, and lungs; in contrast, a quarter of the total dose was recovered from the livers of DAMB-treated animals. LNYS had dose-dependent effects on glomerular filtration and distal, but not proximal, renal tubular function which did not exceed those of DAMB at the highest investigated dosage of 6 mg/kg. The results of this experimental study demonstrate fundamental differences in the dispositions of LNYS and DAMB. Based on its enhanced urinary exposure, LNYS may offer a therapeutic advantage in systemic fungal infections involving the upper and lower urinary tracts that require therapy with antifungal polyenes.


2001 ◽  
Vol 280 (1) ◽  
pp. G14-G20 ◽  
Author(s):  
Nelson Garcia ◽  
Zoltán Járai ◽  
Faridoddin Mirshahi ◽  
George Kunos ◽  
Arun J. Sanyal

The endogenous cannabinoid anandamide causes hypotension and mesenteric arteriolar dilation. A detailed analysis of its effects on systemic and portal venous hemodynamics had not yet been performed. We assessed the effects of anandamide (0.4–10 mg/kg) on systemic and portal hemodynamics with and without prior treatment with various antagonists. The specific antagonists used included SR-141716A, N ω-nitro-l-arginine methyl ester, indomethacin, and nordihydroguaiaretic acid. Anandamide produced a dose-dependent decrease in mean arterial pressure due to a drop in systemic vascular resistance (SVR) that was accompanied by a compensatory rise in cardiac output. Anandamide also elicited an increase in both portal venous flow and pressure, along with a decline in mesenteric vascular resistance (MVR). Pretreatment with 3 mg/kg SR-141716A, a CB1 antagonist, prevented the decline of SVR and MVR from the lower dose of anandamide. Antagonism of nitric oxide synthetase, cyclooxygenase, or 5-lipoxygenase did not prevent the systemic nor the portal hemodynamic effects of anandamide. Furthermore, the use of R-methanandamide, a stable analog of anandamide, produced similar hemodynamic effects on the mesenteric vasculature, thereby implying that the effects of anandamide are not related to its breakdown products. Anandamide produced profound, dose-dependent alterations in both the systemic and portal circulations that could be at least partially blocked by pretreatment with SR-141716A.


1999 ◽  
Vol 340 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Russell R. HOOVER ◽  
Klaus H. THOMAS ◽  
Joanna FLOROS

Glucocorticoids have complex effects on human surfactant protein (SP) SP-A1 and SP-A2 gene expression that occur at both transcriptional and post-transcriptional levels. In the lung adenocarcinoma cell line NCI-H441, dexamethasone causes a dose-dependent decrease in total SP-A mRNA levels and inhibits SP-A gene transcription. In this study, a deletional analysis of the SP-A1 promoter was performed in order to identify cis-acting elements that mediate dexamethasone responsiveness in NCI-H441 cells. The region -32/+63 relative to the start of SP-A1 transcription mediated both basal promoter activity and dexamethasone repression of transcription. Removal of the region +18/+63 abolished dexamethasone responsiveness, indicating that sequences within this region are necessary for the inhibitory effect. Furthermore, the region -32/+63 formed a sequence-specific DNA-protein complex with NCI-H441 nuclear extract. This DNA-protein complex was induced by dexamethasone exposure and its formation was mediated partially by sequences within the region +26/+63.


2018 ◽  
Vol 7 (5) ◽  
pp. 419-424
Author(s):  
Abiodun Olusoji Owoade ◽  
◽  
Adewale Adetutu ◽  
Augustine Ikhueoya Airaodion ◽  
Olufemi Ogundeji Ogundipe ◽  
...  

This study evaluated the acute and subacute toxicity effects of Bridelia ferrugelia leaf extract. Observation of the acute group showed that LD50 of the extract is greater than 2000 mg/kg. The subacute investigation was determined by administering 200 mg/kg, 400 mg/kg and 600 mg/kg of the methanolic leaf extract to male Wistar rats for 28 days with distilled water as a control. Haematological and biochemical parameters, as well as lipid levels of vital organs, were examined. Toxicological evaluation of the extract did not produce any significant change in haematological and biochemical parameters in rats. In addition, blood lipids levels were not significantly affected, while dyslipidaemia effect observed in some vital organs were found to be nonlipotoxic. Administration of Bridelia ferrugelia at a dose of 200, 400 and 600 mg/kg for 28 days resulted in reduction of cardiac cholesterol level by 37.16%, 39.36% and 17.64% respectively, reduction of pulmonary cholesterol by 22.17%, 28.08% and 6.24 % respectively and dose-dependent decrease in pulmonary triglyceride level by 16.17, 29.14 and 54.25% respectively. This study indicates that Bridelia ferrugelia extract administered at 200, 400 and 600 mg/kg did not show any toxic effect on the parameters investigated in rats. Thus, the extract can be considered safe when administered orally


2020 ◽  
Vol 37 (2) ◽  
pp. 123-127
Author(s):  
Kyeong Ju Park ◽  
Ho-Sueb Song

Background: This study was designed using a mouse model of atopic dermatitis [phthalic anhydride (PA)-treated mice], to investigate the anti-inflammatory effect of bee venom pharmacopuncture (BVP) in keratinocytes.Methods: Western blot analysis was performed to investigate inflammation related protein expression of iNOS, COX-2, phospho-ERK (p-ERK), and ERK, in LPS (1 μg/mL)-activated keratinocytes, following BVP treatment, and in PA-treated mice, after BVP treatment. Griess reaction was performed to investigate NO concentration. Enzyme-linked immunosorbent assays were used to determine the concentrations of interleukin (IL)-4+, IL-17A+, IL-13 and IL-4 in PA-treated mice after BVP treatment. In addition, monocyte, macrophage, neutrophil, and eosinophil counts were measured to observe the changes in white blood cell infiltration.Results: The keratinocytes of the BVP-treated group showed a decreased expression of iNOS, COX-2, ERK at 5 OX-2, ERK E, and p-ERK at 1, 2 and 5 RKRK ERK ERK, and a dose-dependent decrease in NO concentration at 2 and 5 ntrationof s. In the BVP-treated groups (0.1 μ.1-trea μ.1-treated gr), PA-treated mice showed recovery after 4 weeks which was dose-dependent, showing a significant decrease in clinical scores for AD, and a decreased concentration of IL-13 and IL-4 with BV treatment. There was a dose-dependent decrease in the infiltration of eosinophils, neutrophils, monocytes, macrophages, and a decreased thickness of the epidermis due to inflammation, and decreased expressions of iNOS, COX-2, p-ERK, ERK, especially in the 0.1 μ0/mL BVP-treated group,<br>Conclusion: These results suggest that BVP may be an effective alternative treatment for atopic dermatitis.


2020 ◽  
Vol 23 (3) ◽  
pp. 82-84
Author(s):  
Lisa Kurniati ◽  
Andi Arjuna ◽  
Sukamto S Mamada

Nanopartikel ZnS merupakan material semi konduktor yang memiliki sifat unik dan manfaat yang besar dibidang kesehatan, terutama sebagai antibakteri dan biomarker kanker. Walaupun demikian, informasi mengenai toksisitas dari nanopartikel ZnS masih sangat terbatas. Oleh karena itu, pada penelitian ini telah dilakukan evaluasi hematotoksisitas secara in vitro nanopartikel ZnS hasil reduksi biomatriks Escherichia coli. Penyiapan nanopartikel ZnS diawali dengan pencampuran dispersi ZnSO4 konsentrasi 200 bpj ke dalam medium Luria Bertani Broth (LBB) yang ditumbuhi E.Coli  sebagai bioreduktor. Produk yang dihasilkan dikarakterisasi dengan uji photolimunisence (PL) dan spektrofotometri pada rentang panjang gelombang 250-700 nm. Hasilnya, nanopartikel ZnS berpendar biru dan diidentifikasi pada λmax 288 nm dengan absorbansi 0,905. Partikel yang dihasilkan kemudian didispersikan dengan variasi volume 30 µl, 40 µl, 50 µl pada larutan tyrod. Data persentase hemolisis secara berturut-turut adalah 32%, 39%, 22%, 0% (kontrol negatif) dan 100% (kontrol positif). Sehingga dapat disimpulkan bahwa nanopartikel ZnS hasil reduksi E.coli memberikan efek toksik terhadap sel darah merah


Sign in / Sign up

Export Citation Format

Share Document