scholarly journals Diallyl-n-Sulfide of Garlic Inhibits Glycogenolysis in Heat-Stressed Laying Sentul Chicken

2021 ◽  
Vol 16 (4) ◽  
pp. 301-307
Author(s):  
A. Mushawwir ◽  
D. Latipudin ◽  
R. Permana ◽  
N. Suwarno

Heat stress causes a decrease in metabolic function and immunity, which results in a decrease in production. The provision of natural extracts such as the active compound dyally n-suldifa (Dn-S) is one strategy to overcome the adverse effects of heat stress. One hundred and twenty-five female laying native chickens, with an average body weight of 1213.83±15.52 g, 40 weeks old, were used in this experiment, to study the impact of Dn-S administration from garlic on the metabolite profile of the glycogenolysis pathway. laying. Laying hens were distributed into five treatment groups, each with 25 samples. Dn-S isolation from garlic isolated by distillation technique. The study was carried out with five types of experimental treatments, as follows the group with a comfort zone temperature (24°C) and without the administration of Diallyl n-Sulfide (Dn-S), heat stress (38°C) and without Dn-S, heat stress (38°C) and 100 µL Dn-S, heat stress (38°C) and 125 µL Dn-S, heat stress (38°C) and 150 µL Dn-S/head. Based on the results of the study, it was shown that heat stress causes an increase in the rate of glycogenolysis and intermediate metabolites and their catalyzing enzymes. It appears that the administration of 150 µL Dn-S, effectively reduces the rate of glycogenolysis. It was concluded that heat stress on laying hens could be avoid by administering garlic Dn-S.

2018 ◽  
Vol 1 (2) ◽  
pp. 1-8
Author(s):  
Esam I. Jassim

A pilot-scale HVAC system is constructed to study the performance of air quality inside the comfort-zone when small fans are utilized to perform the air circulation. The research investigates the impact on energy consumption when the fan of the coil is eliminated from the fan coil unit (FCU).  This would improve access to separate comfort zone controls and positively affect thermal comfort in those areas. In the study, the comfort room temperature variation is measured during 15 minutes in four cases, namely: all fans ON, all Fans OFF, 1-Fan ON, and 2-Fans ON. Optimization of the fan location that forces the zone temperature to stabilize around the set-point value in shorter time is recorded. Observation of the results indicates that the position of the fan does affect the time elapsed to reach the set-point as it affects the inside-air turbulence. Comparison of the four cases shows that the All-Fans-ON case cools down the zone temperature faster than other cases in entire space. In return, the space has fluctuated temperature in the cases of the 1-Fan and 2-Fans ON. This is due to the reduction in the turbulence intensity of the air near the Fan(s)-OFF region.


2020 ◽  
Vol 51 (4) ◽  
pp. 1001-1014
Author(s):  
Sulaiman & Sadiq

The experiment was conducted in a greenhouse during 2017 and 2018 growing seasons to evaluate the impact of the shading and various nutrition programs on mitigating heat stress, reducing the use of chemical minerals, improving the reproductive growth and yield of tomato plant. Split-plot within Randomized Complete Block Design (RCBD) with three replications was conducted in this study. Shading factor was allocated in the main plots and the nutrition programs distributed randomly in the subplots. Results indicate that shading resulted in the decrease of daytime temperature by 5.7˚C as an average for both seasons; thus a significant increasing was found in leaf contents of macro nutrients (Nitrogen, Phosphorous, and Potassium), and micro nutrients (Iron, Zinc and Boron), except the Iron content in 2018 growing season. Furthermore, shading improved significantly the reproductive growth and tomato yield. Among the plant nutrition programs, the integrated nutrient management (INM) including the application of organic substances, bio inoculum of AMF and 50% of the recommended dose of chemical fertilizers; lead to the enhancement of nutrients content, reproductive characteristics and plant yield. Generally, combination of both shading and INM showed positive effects on plants nutrient status and persisting balance on tomato flowering growth and fruits yield.


Author(s):  
Lily N Edwards-Callaway ◽  
M Caitlin Cramer ◽  
Caitlin N Cadaret ◽  
Elizabeth J Bigler ◽  
Terry E Engle ◽  
...  

ABSTRACT Shade is a mechanism to reduce heat load providing cattle with an environment supportive of their welfare needs. Although heat stress has been extensively reviewed, researched, and addressed in dairy production systems, it has not been investigated in the same manner in the beef cattle supply chain. Like all animals, beef cattle are susceptible to heat stress if they are unable to dissipate heat during times of elevated ambient temperatures. There are many factors that impact heat stress susceptibility in beef cattle throughout the different supply chain sectors, many of which relate to the production system, i.e. availability of shade, microclimate of environment, and nutrition management. The results from studies evaluating the effects of shade on production and welfare are difficult to compare due to variation in structural design, construction materials used, height, shape, and area of shade provided. Additionally, depending on operation location, shade may or may not be beneficial during all times of the year, which can influence the decision to make shade a permanent part of management systems. Shade has been shown to lessen the physiologic response of cattle to heat stress. Shaded cattle exhibit lower respiration rates, body temperatures, and panting scores compared to un-shaded cattle in weather that increases the risk of heat stress. Results from studies investigating the provision of shade indicate that cattle seek shade in hot weather. The impact of shade on behavioral patterns is inconsistent in the current body of research, some studies indicating shade provision impacts behavior and other studies reporting no difference between shaded and un-shaded groups. Analysis of performance and carcass characteristics across feedlot studies demonstrated that shaded cattle had increased ADG, improved feed efficiency, HCW, and dressing percentage when compared to cattle without shade. Despite the documented benefits of shade, current industry statistics, although severely limited in scope, indicate low shade implementation rates in feedlots and data in other supply chain sectors do not exist. Industry guidelines and third party on-farm certification programs articulate the critical need for protection from extreme weather but are not consistent in providing specific recommendations and requirements. Future efforts should include: updated economic analyses of cost versus benefit of shade implementation, exploration of producer perspectives and needs relative to shade, consideration of shade impacts in the cow-calf and slaughter plant segments of the supply chain, and integration of indicators of affective (mental) state and preference in research studies to enhance the holistic assessment of cattle welfare.


2021 ◽  
Vol 13 (4) ◽  
pp. 640
Author(s):  
Sadroddin Alavipanah ◽  
Dagmar Haase ◽  
Mohsen Makki ◽  
Mir Muhammad Nizamani ◽  
Salman Qureshi

The changing climate has introduced new and unique challenges and threats to humans and their environment. Urban dwellers in particular have suffered from increased levels of heat stress, and the situation is predicted to continue to worsen in the future. Attention toward urban climate change adaptation has increased more than ever before, but previous studies have focused on indoor and outdoor temperature patterns separately. The objective of this research is to assess the indoor and outdoor temperature patterns of different urban settlements. Remote sensing data, together with air temperature data collected with temperature data loggers, were used to analyze land surface temperature (outdoor temperature) and air temperature (indoor temperature). A hot and cold spot analysis was performed to identify the statistically significant clusters of high and low temperature data. The results showed a distinct temperature pattern across different residential units. Districts with dense urban settlements show a warmer outdoor temperature than do more sparsely developed districts. Dense urban settlements show cooler indoor temperatures during the day and night, while newly built districts show cooler outdoor temperatures during the warm season. Understanding indoor and outdoor temperature patterns simultaneously could help to better identify districts that are vulnerable to heat stress in each city. Recognizing vulnerable districts could minimize the impact of heat stress on inhabitants.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 116-116
Author(s):  
Emma T Helm ◽  
Susanne J Lin ◽  
Nicholas Gabler ◽  
Eric R Burrough

Abstract Swine dysentery (SD) induced by Brachyspira hyodysentariae (Bhyo) causes colitis and mucohemorrhagic diarrhea in grow-finish pigs, however little is known about the physiological changes that occur to the gastrointestinal tract during Bhyo infection. Thus, the objective of this study was to evaluate the impact of a Bhyo challenge on intestinal function and integrity of pigs fed two divergent diets. A total of 36 Bhyo negative gilts (24.3 ± 3.6 kg BW) were selected and assigned to one of three treatment groups (n=12 pigs/trt): 1) Bhyo negative, 20% DDGS diet (CON), 2) Bhyo challenged, 20% DDGS diet (DDGS), and 3) Bhyo challenged, 10% DDGS, 5% beet pulp and 5% resistant potato starch diet (RS). Pigs were fed diets 21 days prior to challenge and on days post inoculation (dpi) 0 and 1, pigs were inoculated with Bhyo or sham. Fecal samples were collected for ATTD and pigs were euthanized for colon collection within 72 hours of initial observation of clinical SD, or at the end of the study (dpi 10-16). Tissues were assessed for ex vivo measures of intestinal integrity and mitochondrial function. The challenge resulted in high morbidity, with 88% of DDGS and RS pigs developing clinical SD. Colon transepithelial resistance was increased in DDGS pigs compared with CON and RS pigs (P=0.005), and colon macromolecule permeability was reduced in both DDGS and RS pigs compared with CON pigs (P=0.006), likely due to mucoid discharge. Colonic mitochondrial oxygen consumption was not impacted by treatment (P >0.10). Further, ATTD of DM, OM, N, and GE were reduced in DDGS pigs compared with CON pigs (P< 0.001), whilst nutrient digestibility was not reduced in RS pigs. Taken together, these data show Bhyo does not appear to reduce ex vivo colonic integrity. Further, the RS diet may reduce severity of a Bhyo challenge.


2021 ◽  
Vol 19 (1) ◽  
pp. 74-89
Author(s):  
Amandeep Kaur ◽  
Parveen Chhuneja ◽  
Puja Srivastava ◽  
Kuldeep Singh ◽  
Satinder Kaur

AbstractAddressing the impact of heat stress during flowering and grain filling is critical to sustaining wheat productivity to meet a steadily increasing demand from a rapidly growing world population. Crop wild progenitor species of wheat possess a wealth of genetic diversity for several biotic and abiotic stresses, and morphological traits and can serve as valuable donors. The transfer of useful variation from the diploid progenitor, Aegilops tauschii, to hexaploid wheat can be done through the generation of synthetic hexaploid wheat (SHW). The present study targeted the identification of potential primary SHWs to introduce new genetic variability for heat stress tolerance. Selected SHWs were screened for different yield-associated traits along with three advanced breeding lines and durum parents as checks for assessing terminal heat stress tolerance under timely and late sown conditions for two consecutive seasons. Heat tolerance index based on the number of productive tillers and thousand grain weight indicated that three synthetics, syn9809 (64.32, 78.80), syn14128 (50.30, 78.28) and syn14135 (58.16, 76.03), were able to endure terminal heat stress better than other SHWs as well as checks. One of these synthetics, syn14128, recorded a minimum reduction in thousand kernel weight (21%), chlorophyll content (2.56%), grain width (1.07%) despite minimum grain-filling duration (36.15 d) and has been selected as a potential candidate for introducing the terminal heat stress tolerance in wheat breeding programmes. Breeding efforts using these candidate donors will help develop lines with a higher potential to express the desired heat stress-tolerant phenotype under field conditions.


2020 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Hatem Mahmoud ◽  
Ayman Ragab

The density of building blocks and insufficient greenery in cities tend to contribute dramatically not only to increased heat stress in the built environment but also to higher energy demand for cooling. Urban planners should, therefore, be conscious of their responsibility to reduce energy usage of buildings along with improving outdoor thermal efficiency. This study examines the impact of numerous proposed urban geometry cases on the thermal efficiency of outer spaces as well as the energy consumption of adjacent buildings under various climate change scenarios as representative concentration pathways (RCP) 4.5 and 8.5 climate projections for New Aswan city in 2035. The investigation was performed at one of the most underutilized outdoor spaces on the new campus of Aswan University in New Aswan city. The potential reduction of heat stress was investigated so as to improve the thermal comfort of the investigated outdoor spaces, as well as energy savings based on the proposed strategies. Accordingly, the most appropriate scenario to be adopted to cope with the inevitable climate change was identified. The proposed scenarios were divided into four categories of parameters. In the first category, shelters partially (25–50% and 75%) covering the streets were used. The second category proposed dividing the space parallel or perpendicular to the existing buildings. The third category was a hybrid scenario of the first and second categories. In the fourth category, a green cover of grass was added. A coupling evaluation was applied utilizing ENVI-met v4.2 and Design-Builder v4.5 to measure and improve the thermal efficiency of the outdoor space and reduce the cooling energy. The results demonstrated that it is better to cover outdoor spaces with 50% of the overall area than transform outdoor spaces into canyons.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jane L. Tarry-Adkins ◽  
Susan E. Ozanne ◽  
Catherine E. Aiken

AbstractWe systematically assessed the impact of metformin treatment on maternal pregnancy outcomes. PubMed, Ovid Embase, Medline, Web of Science, ClinicalTrials.gov and Cochrane databases were systematically searched (inception-1st February 2021). Randomised controlled trials reporting pregnancy outcomes in women randomised to metformin versus any other treatment for any indication were included. Outcomes included gestational weight gain (GWG), pre-eclampsia, gestational hypertension, preterm birth, gestational age at delivery, caesarean section, gestational diabetes, glycaemic control, and gastrointestinal side-effects. Two independent reviewers conducted screening, with a third available to evaluate disagreements. Risk-of-bias and GRADE assessments were conducted using Cochrane Risk-of-Bias and GRADE-pro software. Thirty-five studies (n = 8033 pregnancies) met eligibility criteria. GWG was lower in pregnancies randomised to metformin versus other treatments (1.57 kg ± 0.60 kg; I2 = 86%, p < 0.0001), as was likelihood of pre-eclampsia (OR 0.69, 95% CI 0.50–0.95; I2 = 55%, p = 0.02). The risk of gastrointestinal side-effects was greater in metformin-exposed versus other treatment groups (OR 2.43, 95% CI 1.53–3.84; I2 = 76%, p = 0.0002). The risk of other maternal outcomes assessed was not significantly different between metformin-exposed versus other treatment groups. Metformin for any indication during pregnancy is associated with lower GWG and a modest reduced risk of pre-eclampsia, but increased gastrointestinal side-effects compared to other treatments.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 174-174
Author(s):  
Mark Knauer ◽  
Venkatesh Mani ◽  
Tom Marsteller ◽  
Vanessa Iseri ◽  
Brian Kremer

Abstract Heat stress (HS) severely impacts swine leading to compromised barrier integrity, diminished intestinal health and decreased performance. ButiPEARL® Z (BPZ) is an encapsulated formulation of zinc and butyrate shown to alleviate the impact of HS by improving intestinal health. KemTRACE® Chromium (KTCr) is an organic trace mineral shown to decrease the impact of stress and improve glucose utilization, leading to muscle growth and improved performance. To test the efficacy of BPZ and KTCr on mitigating stress from natural heat exposure, a grow-finish trial was conducted from June-September. There were four treatments: negative control (NC), NC+.45kg BPZ, NC+.91kg BPZ and NC+1.82kg BPZ. Three BPZ treatments were also supplemented with 200ppb KTCr. Pigs (n=480) were randomly assigned to 96 pens at 22.5kg. Performance was measured at d0, 28, 56 and at marketing. From d56 to market, ADFI was greater (P&lt; 0.05) for 0.45kg and 0.91kg BPZ when compared to NC and 1.82kg BPZ (3.40 and 3.35 vs. 3.26 and 3.27kg, respectively). Therefore, relationships between ADFI day 56 to market and ADFI day 0 to market with BPZ level were curvilinear (P&lt; 0.05). Both market weight and overall ADG tended (P&lt; 0.10) to have curvilinear relationships with BPZ level. While not different, 0.45kg and .91kg BPZ supplemented pigs were .97kg and 1.25kg heavier, respectively, on marketing day compared to control. No differences (P &gt;0.10) were observed for Feed:Gain. Part of the negative effects of HS include decrease in feed intake which contributes to intestinal damage and decreased performance. Data from this study show that both treatment combinations were able to improve feed intake and decrease stress which might have led to the improved weight gain at the end. The data provides evidence that the combination of BPZ and KTCr may alleviate the negative effects of HS and help with the performance of grow-finish pigs during heat stress.


Sign in / Sign up

Export Citation Format

Share Document