scholarly journals Advancements in mechanical engineering spell hopeful development of autonomous biobots

2019 ◽  
Author(s):  
Aris Triwiyatno ◽  
Sumardi Sumardi

In the case of injection gasoline engine, or better known as spark ignition engines, an effort to improve engine performance as well as to reduce fuel consumption is a fairly complex problem. Generally, engine performance improvement efforts will lead to increase in fuel consumption. However, this problem can be solved by implementing engine torque control based on intelligent regulation such as the fuzzy logic inference system. In this study, fuzzy logic engine torque regulation is used to control the throttle position entered by the driver to achieve optimal engine torque. An engine torque vs. throttle position and engine speed mapping for vehicles with economical function is used to build this control process regulation. From the simulation result, it can be concluded that this control strategy is very effective to reduce fuel consumption and simultaneously to optimize the engine performance.

2011 ◽  
Vol 317-319 ◽  
pp. 1999-2006
Author(s):  
Yu Wan ◽  
Ai Min Du ◽  
Da Shao ◽  
Guo Qiang Li

According to the boost mathematical model verified by experiments, the valve train of traditional gasoline engine is optimized and improved to achieve extended expansion cycle. The simulation results of extended expansion gasoline engine shows that the extended expansion gasoline engine has a better economic performance, compared to traditional gasoline engines. The average brake special fuel consumption (BSFC) can reduce 22.78 g / kW•h by LIVC, but the negative impacts of extended expansion gasoline engine restrict the potential of extended expansion gasoline engine. This paper analyzes the extended expansion gasoline engine performance under the influence of LIVC, discusses the way to further improve extended expansion gasoline engine performance.


2015 ◽  
Vol 77 (8) ◽  
Author(s):  
S. F. Zainal Abidin ◽  
M. F. Muhamad Said ◽  
Z. Abdul Latiff ◽  
I. Zahari ◽  
M. Said

There are many technologies that being developed to increase the efficiency of internal combustion engines as well as reducing their fuel consumption.  In this paper, the main area of focus is on cylinder deactivation (CDA) technology. CDA is mostly being applied on multi cylinders engines. CDA has the advantage to improve fuel consumption by reducing pumping losses at part load engine conditions. Here, the application of CDA on 1.6L four cylinders gasoline engine is studied. One-dimensional (1D) engine modeling work is performed to investigate the effect of intake valve strategy on engine performance with CDA. 1D engine model is constructed based on the 1.6L actual engine geometries. The model is simulated at various engine speeds at full load conditions. The simulated results show that the constructed model is well correlated to measured data. This correlated model is then used to investigate the CDA application at part load conditions. Also, the effects on the in-cylinder combustion as well as pumping losses are presented. The study shows that the effect of intake valve strategy is very significant on engine performance. Pumping losses is found to be reduced, thus improve fuel consumption and engine efficiency.


2013 ◽  
Vol 315 ◽  
pp. 20-24 ◽  
Author(s):  
Taib Iskandar Mohamad ◽  
Mark Jermy ◽  
Matthew Harrison

Power reduction when converting a gasoline engine to propane can be mitigated by designing an injection system so the heat required for evaporation of the propane is drawn from the intake air. Air is cooled and densified, resulting in volumetric efficiency increase. LPG sprays were imaged using Mie and LIF imaging techniques from a port fuel injector, and from long and short connecting pipes. Images were taken in an optically-accessed pressure chamber at atmospheric pressure and fuel pressures of 1.5 MPa. Images of the pipe-coupled injection spray show significant evaporation in the pipe, whose amount depend on the length and diameter of the pipe. The duration of the LPG pulse at the manifold end is, for 300mm pipes, five times the original duration at the injector, and even greater for 600mm pipes. The narrow sprays and the amount of evaporation that occurs before the fuel enters the manifold explains the differences in engine torque and in-cylinder mixture temperature with the different systems.


2020 ◽  
Vol 9 (2) ◽  
pp. 91
Author(s):  
Abdi Hanra Sebayang ◽  
Husin Ibrahim ◽  
Surya Dharma ◽  
Arridina Susan Silitonga ◽  
Berta Br Ginting ◽  
...  

The depletion of fossil fuels, rising of earth temperatures and declining of air quality are an unavoidable phenomenon today. Bioethanol fuel is one solution to reduce this problem that comes from renewable raw materials. The purpose of this study is to investigate engine performance and exhaust emissions at gasoline engine by using the sorghum seeds bioethanol-pertalite blends with different mixed ratios (10%, 15%, and 20%). The test is performed on a four-stroke gasoline engine without modification. Engine speeds vary from 1000 to 4000 rpm, and properties of the sorghum seeds bioethanol-pertalite blends are measured and analyzed. In addition, engine torque, brake power, brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) as well as carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx) emissions are measured. The results show that BSFC decreased while BTE increased for a fuel blends containing 20% bioethanol at 3500 rpm engine speed, with each maximum value of 246.93 g/kWh and 36.28%. It is also found that CO and HC emissions are lower for the sorghum seeds bioethanol-pertalite blends. Based on the research results, it can be concluded that the sorghum seeds bioethanol-pertalite blends can improve engine performance and reduce exhaust gas emissions. Keywords: bioethanol; pertalite; performance engine; exhaust gas emission; alternatif fuel.


Author(s):  
Sena Mahendra ◽  
Fahmy Fatra ◽  
Akhmad Riszal Riszal ◽  
Didik Rohmantoro

Motorized vehicles with economical fuel, agile, fast, and practical are some of the main factors consumers determine the choice of buying a motorcycle. People who own motorcycles under 2000 have not been equipped with fuel-saving devices, so they are wasteful of fuel and must be smart to save fuel. Many motorcycle manufacturers release the newest fuel-efficient products, but they affect the engine's performance. The price of premium fuel types is Rp. 6,500.00 per liter, petalite Rp. 7,600.00 per liter, firstly Rp. 8,900.00 per liter, and Pertamax turbo Rp. 10,100.00 per liter. High fuel prices encourage researchers to make various fuel-saving innovations. The purpose of this study is to develop an HCS catalyst pipe design double spiral model arranged in series to save fuel above 67% on a 4 stroke motorcycle without affecting the engine performance. The research method uses independent variables with engine speed, pipe length, pipe diameter, and Pertamax volume. Dependent variable by testing engine torque and power, fuel consumption time, temperature, and noise of the 156.7cc Mega Pro motorcycle. The addition of dual HCS catalyst spiral pipes and Pertamax volumes adds to engine performance time. At a length of 500 mm and 2000 ml, the Pertamax volume for the engine speed of 3500 rpm is only able to save fuel by 52.52%. The most optimal HCS double catalyst spiral pipe design is a 500 cm long pipe with a volume of Pertamax 2000 ml. In addition to engine performance time on the catalyst spiral pipe design can increase engine torque and power by 92.3% at 3500 rpm and reduce the temperature by 12.34% at 6000 rpm, and 1.93% noise at 4000 rpm. Increasing the double HSC catalyst spiral pipe and Pertamax volume can increase the hydrocarbon content of fuel entering the combustion chamber supplied from Pertamax vapor. Premium fuel (C8H18) plus Pertamax vapors. This makes the fuel content has a high octane value, greater engine power, and low fuel consumption. A high octane value affects perfect engine combustion, reduced knocking, low engine temperature, and decreased noise.Kendaraan bermotor dengan bahan bakar yang irit, lincah, cepat, dan praktis merupakan salah satu faktor utama konsumen menentukan pilihan membeli sepeda motor. Masyarakat yang memiliki sepeda motor di bawah tahun 2000 belum dilengkapi dengan alat penghemat bahan bakar, sehingga boros bahan bakar dan harus pintar menghemat bahan bakar. Banyak produsen sepeda motor yang mengeluarkan produk terbarunya paling irit bahan bakar, tetapi mempengaruhi performa mesinnya. Harga bahan bakar jenis premium Rp. 6.500,00 per liter, pertalite Rp. 7.600,00 per liter, pertamax Rp. 8.900,00 per liter, dan pertamax turbo Rp. 10.100,00 per liter. Harga bahan bakar yang tinggi mendorong peneliti melakukan berbagai inovasi penghemat bahan bakar.Tujuan penelitian ini mengembangkan desain pipa katalis HCS model spiral ganda yang disusun seri sehingga mampu menghemat bahan bakar diatas 67% pada sepeda motor 4 tak tanpa mempengaruhi performa mesin. Metode penelitian menggunakan variabel bebas dengan putaran mesin, panjang pipa, diameter pipa, dan volume pertamax. Variabel terikat dengan menguji torsi dan daya mesin, waktu konsumsi bahan bakar, temperatur, dan kebisingan sepeda motor Mega Pro 156,7cc. Penambahan pipa spiral katalis HCS ganda dan volume pertamax menambah waktu performa mesin. Pada panjang 500 mm dan 2000 ml volume pertamax untuk kecepatan putaran mesin 3500  rpm hanya mampu menghemat bahan bakar sebesar  52,52%. Desain pipa spiral katalis HCS ganda  yang paling optimal dari yaitu pipa dengan panjang 500 cm dan volume pertamax 2000 ml. Selain waktu performa mesin pada desain pipa spiral katalis ini dapat meningkatkan torsi dan daya mesin sebesar 92,3% pada putaran 3500 rpm serta mengurangi temperatur 12,34% pada putaran 6000 rpm, dan kebisingan 1,93% pada putaran 4000 rpm. Bertambahnya pipa spiral katalis HSC ganda dan volume pertamax dapat meningkatnya kandungan hidrokarbon bahan bakar yang masuk ke ruang pembakaran disuplay dari uap pertamax. Bahan bakar premium (C8H18) di tambah uap pertamax.menjadikan kandungan bahan bakar memiliki nilai oktan tinggi, daya mesin yang lebih besar dan komsumsi bahan bakar rendah. Nilai oktan tinggi mempengaruhi pembakaran mesin sempurna, knocking berkurang, temperatur mesin rendah, dan kebisingan menurun


2022 ◽  
Vol 12 ◽  
pp. 141-154
Author(s):  
Abderrahmane Moussaoui ◽  
Habib Benbouhenni ◽  
Djilani Ben Attous

This article presents 24 sectors direct torque control (DTC) with fuzzy hysteresis comparators for the doubly-fed induction motor (DFIM) using a three-level neutral point clamped (NPC) inverter. The designed DTC technique of the DFIM combines the advantages of the DTC strategy and fuzzy logic controller. The reaching conditions, stability, and robustness of the DFIM with the designed DTC technique are guaranteed. The designed DTC technique is insensitive to uncertainties, including parameter variations and external disturbances in the whole control process. Finally, the designed DTC technique with fuzzy hysteresis comparators is used to regulate the electromagnetic torque and the flux of the DFIM fed by the three-level NPC inverter and confirms the validity of the designed DTC technique. Results of simulations containing tests of robustness and tracking tests are presented.


Author(s):  
C. H. Ling ◽  
M. A. Abas

Water injection is a promising solution to reduce fuel consumption while improving the performance of a turbocharged gasoline engine. One-dimensional (1D) engine simulation software, AVL BOOST is rarely used to model water injection. Therefore, this study is aimed to demonstrate the detailed port water injection modelling via AVL BOOST. A four-cylinder turbocharged gasoline engine was developed in AVL BOOST based on the specification of the engine test rig and verified to be used as the baseline model. The port water injection modelling was then added to the baseline model. Water to fuel mass ratios of 0.05, 0.10, 0.15, 0.2 and 0.25 were chosen as the variables to investigate the effect of water injection on the engine performance. The results showed that maximum engine torque and IMEP increased by 10.80% and 8.65%, respectively at 3000 rpm. The water injection also reduced the in-cylinder pressure at the end of the compression stroke, reducing the compression work and improving efficiency. The reduction of combustion temperature also indicates potential for NOx reduction. The lower exhaust temperature can reduce the use of fuel enrichment which consequently reduces the fuel consumption. Conclusively, the water injection model can predict the engine performance parameters accurately.


Author(s):  
Simeon Iliev

The aim of this study is to develop the one-dimensional model of a four-cylinder, four-stroke, multi-point injection system SI engine and a direct injection system SI engine for predicting the effect of various fuel types on engine performances, specific fuel consumption, and emissions. Commercial software AVL BOOST was used to examine the engine characteristics for different blends of methanol and gasoline (by volume: 5% methanol [M5], 10% methanol [M10], 20% methanol [M20], 30% methanol [M30], and 50% methanol [M50]). The methanol-gasoline fuel blend results were compared to those of net gasoline fuel. The obtained results show that when methanol-gasoline fuel blends were used, engine performance such as power and torque increases and the brake-specific fuel consumption increases with increasing methanol percentage in the blended fuel.


Author(s):  
R. D. Maugham ◽  
N. D. Vaughan ◽  
C. J. Brace ◽  
S. W. Murray

Abstract A continuously variable transmission (CVT) allows a powertrain controller the freedom to develop a required output power at a range of engine torque and speed conditions. This flexibility can be used to maximise fuel efficiency. Due to low frictional and pumping losses a gasoline engine’s fuel efficiency is maximised at low speed, high torque conditions. However due to the reduced torque margin available, controlling a gasoline engine in this region compromises transient vehicle response. Dilution torque control, using EGR or lean burn, has the potential to maintain the economy gains available using a CVT powertrain whilst improving a vehicle’s driveability. This paper introduces preliminary work that has been undertaken to investigate the potential of charge dilution to control steady state engine torque. A test rig has been developed based around an engine fitted with variable cam phasing and an external EGR system. The paper contains a discussion of initial results of a lean dilution test program used to demonstrate the principle.


2021 ◽  
pp. 146808742110396
Author(s):  
Gurtej Singh ◽  
Mohammad Farooq Wani ◽  
Mohammad Marouf Wani

This study concentrates on enhancing the performance of the gasoline engine through nano-lubrication. The effect of Graphene nano-platelets (GNP) as lubricant additives in SAE 15W40 oil on the fuel energy consumption and piston ring wear is investigated. GNP-filled lubricating oil boosted the brake strength, engine torque, and mechanical efficiency, whereas the gasoline engine’s brake specific fuel consumption (BSFC) decreased by 5.3%–6.5% due to a 1.7%–3.46% improvement in engine mechanical efficiency. Further, emission results showed that the GNP-filled lubricating oil reduced the emissions of the engine by approximately 3%–6% as compared to the virgin lubricating oil. Furthermore, the piston ring wear was found to reduce by using GNP-filled nano-lubricant. The characterization of the worn piston ring surfaces showed that the tribo-film formed on wear tracks resulted in the improved performance of the engine thereby reducing abrasive wear and surface roughness. From these studies, an attempt has been made to co-relate engine performance characteristics with tribological perception to contribute in the direction of energy savings and fuel economy.


Sign in / Sign up

Export Citation Format

Share Document