scholarly journals Impact damage detection in fiberglass composites using low acoustic impedance-based PZT transducers

2019 ◽  
Author(s):  
Ali Mohammadabadi ◽  
Alireza Chamani ◽  
Roberto Dugnani

The objective of this work is to evaluate the ability of a lead-zirconate-titanate (PZT) transducer to detect the damages caused by the impacts in fiberglass-epoxy composites. Impacts were created by a hammer (unquantified energy) and an automatic impact system (quantified energy) in multiple composite sheets. The mechanism of damage detection relies on the impedance measurement by a low acoustic impedance (LAI) transducer which resonates in the radial mode rather than the regular thickness mode. The effect of surface roughness was investigated by making specimens with different quantified surface roughness values. It was shown that the surface roughness and boundary conditions are affecting the results of the experiments in the case of very rough surface and hard boundary conditions. The main body of this study was testing the setup on the composite sheets. The specimens were tested for an energy range of 10 to 54 joules. The surface of each specimen was gridded with a step size of 5 mm and the impedance was measured for each location. The results were normalized versus to a situation that the transducer was not in contact with any load. It was shown that the proposed portable and easy-to-use LAI setup could detect the damages qualitatively. The normalized measured impedance was variable, but it showed a significant increase, in some cases as high as 100%, on the impact’s region.

2014 ◽  
Vol 534 ◽  
pp. 17-23 ◽  
Author(s):  
M. Zaleha ◽  
Shahruddin Mahzan ◽  
M.I. Idris

This paper presents the detection of impact damage in a natural fibre reinforced composite plate under low velocity impact damage. Lead Zirconate Titanate (PZT) sensors were placed at ten different positions on each plate in order to record the response signals. The response signals captured from each sensor were collected for impacts performed by a data acquisition system. The impacted plates were examined with optical microscope to examine the damaged areas. It was found that the damaged size grew proportionally with impact force. The results also revealed that PZT sensors can be used to detect the damage extent with the waveform of sensor signals implying the damage initiation and propagation which detected above the damage force of 150N.


2019 ◽  
Vol 19 (2) ◽  
pp. 339-356 ◽  
Author(s):  
Balamonica K ◽  
Jothi Saravanan T ◽  
Bharathi Priya C ◽  
Gopalakrishnan N

Structural damage detection using unmanned Structural Health Monitoring techniques is becoming the need of the day with the technologies available presently. Sensors made of Lead Zirconate Titanate materials, due to their simplicity and robustness, are increasingly used as an effective monitoring sensor in Structural Health Monitoring. Continuous monitoring of the structures using Lead Zirconate Titanate sensors often results in a laborious data retrieval process due to the large amount of signal generated. To speed up the data retrieval process, a multi-sensing technique in which the Lead Zirconate Titanate patches are connected in series and parallel is proposed for structural damage detection. The proposed method is validated using an experimental investigation carried out on a reinforced concrete beam embedded with smart Lead Zirconate Titanate sensor units. The beam is subjected to damage, and the location of damage is identified using conductance signatures obtained from patches sensed individually and through multiplexing. This article proposes an effective methodology for selection of patches to be connected in series/parallel to maximise the efficiency of damage detection. Damage quantification using conventional statistical metrics such as root mean square deviation, mean absolute percentage deviation and cross correlations are found to be ineffective in identifying the location of damage from the multiplexed signatures. In turn, dynamic metrics such as moving root mean square deviation, moving mean absolute percentage deviation and moving cross correlation with overlapped moving blocks of data are proposed in the present work and their ability to detect the damage location from multiplexed signatures is discussed.


Author(s):  
Qing Guo ◽  
G. Z. Cao ◽  
I. Y. Shen

Lead Zirconate Titanate Oxide (PbZrxTi1−xO3 or PZT) is a piezoelectric material widely used as sensors and actuators. For microactuators, PZT often appears in the form of thin films to maintain proper aspect ratios. This paper is to present a simple and low-cost method to measure piezoelectric constant d33 of PZT thin films, which is a major challenge encountered in the actuator development. We use an impact hammer with a sharp tip to generate an impulsive force that acts on the PZT film. The impulsive force and the responding voltage are then measured to calculate the piezoelectric constant d33. The impulsive force has large enough amplitude so that a good signal-to-noise ratio can be maintained. Furthermore, the impulsive force has extremely short duration, so the discharge effect (i.e., the time constant effect) of the PZT circuit can be ignored. Preliminary testing on bulk PZT through this new method leads to two conclusions. Firstly, boundary conditions of the specimen are critical. In particular, the specimen must be securely fastened. Since the impulsive load only acts on a tiny area, loose boundary conditions can introduce spurious results from other piezoelectric constant d31. Secondly, size of the specimen is critical. Specimen of smaller size leads to more accurate measurements of the piezoelectric constant d33.


2007 ◽  
Vol 26-28 ◽  
pp. 1265-1268 ◽  
Author(s):  
Chan Yik Park

Various damage index (DI) algorithms of detecting changes such as a loosen bolt and a delamination development in a composite structure were examined using ultrasonic Lamb waves generated by embedded piezoelectric active sensors. The DI is a single value that is a function of response signal’s attenuation due to any damage or changes in a structure. Various DI algorithms such as active damage interrogation (ADI), time domain root men square (RMS), short time Fourier Transform (STFT) and time reversal (TR) were discussed. For experimental validation, a composite stiffened panel was used, and loosen bolt damage and low-velocity- impact damage were tested. In order to pitch and catch Lamb waves, surface mounted PZTs (lead zirconate titanate) were used. According to the DI algorithms, appropriate ultrasonic guided Lamb waves were selected for actuators. Each set of DI algorithm and drive signal showed different characteristics to detect the damage.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 353
Author(s):  
Quang-Quang Pham ◽  
Ngoc-Loi Dang ◽  
Jeong-Tae Kim

In this paper, a piezoelectric sensor-embedded smart rock is proposed for the electromechanical impedance monitoring of internal concrete damage in a prestressed anchorage zone. Firstly, a piezoelectric sensor-embedded smart rock is analyzed for impedance monitoring in concrete structures. An impedance measurement model is analyzed for the PZT (lead zirconate titanate)-embedded smart rock under compression in a concrete member. Secondly, a prototype of the smart rock embedded with a PZT sensor is designed in order to ascertain, sensitively, the variations of the impedance signatures induced by concrete damage in an anchorage zone. Thirdly, the performance of the smart rock is estimated from a numerical analysis and experimental tests. Variations in the impedance signals under compressive test cases are analyzed in order to predetermine the sensitive frequency band for the impedance monitoring. Lastly, an experiment on an anchorage zone embedded with the smart rocks and surface-mounted PZT sensors is conducted for the impedance measurement under a series of loading cases. The impedance variations are quantified in order to comparatively evaluate the feasibility of the sensor-embedded smart rock for the detection of internal concrete damage in the anchorage zone. The results show that the internal concrete damage was successfully detected using the PZT-embedded smart rock, thus enabling the application of the technique for anchorage zone health monitoring.


2009 ◽  
Vol 79-82 ◽  
pp. 2031-2034 ◽  
Author(s):  
Chee Kiong Soh ◽  
Yee Yan Lim

In this paper, the feasibility of damage detection and characterization using the EMI technique on high cycles fatigue induced damage is investigated. Cyclic tensile load is applied on a lab sized aluminium beam up to failure. Piezo-impedance transducer in the form of PZT patch (lead zirconate titanate) is surface bonded on the specimen for crack detection. Progressive shift in admittance signatures measured by the PZT patch corresponding to increase of loading cycles reflects effectiveness of the EMI technique in tracing the process of fatigue damage progression.


2016 ◽  
Vol 20 (2) ◽  
pp. 170-179 ◽  
Author(s):  
Yu Zhang ◽  
Xin Feng ◽  
Zhe Fan ◽  
Shuang Hou ◽  
Tong Zhu ◽  
...  

Seismic damage detection of concrete dams has always attracted much attention in hydraulic structure community. In this article, a novel seismic damage detection system was developed to perform seismic damage monitoring in concrete dams. As its importance in achieving the dam damage detection, the arrangement of a distributed lead zirconate titanate sensor network was introduced in detail. A dam model system with a distributed lead zirconate titanate sensor network was used as an object for verification. A shaking table was used to simulate the earthquake ground motion for the object to be tested. The seismic damage detection system could be used in not only the seismic damage process monitoring by measuring the dynamic stress history but also the distributed detecting of the dam damaged region. By analyzing the sensor signals, the emergence and development of the structural damages could be monitored timely. A damage index matrix was presented to evaluate the damage status of the dam in different paths. The experimental results verified the timeliness and the effectiveness of the proposed method.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2010 ◽  
Author(s):  
Hameed ◽  
Li ◽  
Chen ◽  
Qi

A multistage damage detection method is introduced in this work that uses piezoelectric lead zirconate titanate (PZT) transducers to excite/sense the Lamb wave signals. A continuous wavelet transformation (CWT), based on the Gabor wavelet, is applied to accurately process the complicated wave signals caused by the damage. For a network of transducers, the damage can be detected in one detection cell based on the signals scattered by the damage, and then it can be quantitatively estimated by three detection stages using the outer tangent circle and least-squares methods. First, a single-stage damage detection method is carried out by exciting a transducer at the center of the detection cell to locate the damaged subcell. Then, the corner transducers are excited in the second and third stages of detection to improve the damage detection, especially the size estimation. The method does not require any baseline signal, and it only utilizes the same arrangement of transducers and the same data processing technique in all stages. The results from previous detection stages contribute to the improvement of damage detection in the subsequent stages. Both numerical simulation and experimental evaluation were used to verify that the method can accurately quantify the damage location and size. It was also found that the size of the detection cell plays a vital role in the accuracy of the results in this Lamb-wave-based multistage damage detection method.


2007 ◽  
Vol 333 ◽  
pp. 215-218 ◽  
Author(s):  
Lisa Palmqvist ◽  
Karin Lindqvist ◽  
Chris Shaw

Porous piezoelectric ceramics are of interest for hydrophones and medical imaging because of their enhanced coupling with water or biological tissue due to acoustic impedance matching. Multilayer lead zirconate titanate (PZT) substrates with dense and porous interlayers were produced by tape casting of aqueous PZT slips with high solids contents. The use of latex binders with low viscosity enabled addition of starch as a fugitive additive to create air/ceramic composites with ´3-3´connectivity. Microstructures, piezoelectric and mechanical properties of sintered, poled laminates were evaluated. The relative permittivity, ε33, decreased by 40% for laminates with porous interlayers compared to dense ones, whereas the relative decrease in piezoelectric longitudinal coefficient, d33, was 35%. Laminates with porous interlayers maintained 72% of their bending strength compared to dense ones.


2019 ◽  
Author(s):  
Ali Mohammadabadi ◽  
Roberto Dugnani

Near-surface defects are one of the most common types of damage occurring in polymer composite materials. Conventional Non-Destructive Testing (NDT) techniques, especially ultrasonic testing, are not always suitable for detecting these types of defect, especially in thin plates. The proposed NDT method in this article employs Low Acoustic Impedance (LAI) characterization. The novelty of LAI technique lies in the transverse resonating of Lead-Zirconate-Titanate (PZT) transducer which shows significant lower effective acoustic impedance compared to thickness - extension mode. The LAI technique eliminates the need for the matching layers and reduces the manufacturing cost consequently. Briefly, the analytical model has been introduced and the fabrication procedure has been discussed in detail. The setup has been evaluated both numerically and experimentally to detect a debonding. The results proved the ability of LAI technique in the detection of defects and, moreover, the approximate geometry of the affected region as well.


Sign in / Sign up

Export Citation Format

Share Document