“On Wafer” Design Validation Through Complementary Dual-Side Circuit Editing using FIB

Author(s):  
Mark A. Thompson ◽  
Calvin Chen ◽  
Chun-Cheng Tsao ◽  
Ming Han ◽  
Hun Lian Tsai

Abstract We present, a novel solution to focused ion beam (FIB) circuit edit, performed through the back and front surfaces of the same semiconductor device under test (DUT). This complementary dual-side FIB modification was performed at wafer level test, on a wafer piece, utilizing a coaxial photon-ion focused ion beam system. The DUT was found to have excessive Iddq leakage current due to a fault in a tri-state driver circuit, and was determined that two FIB edits were required to validate the proposed correction. Wafer level editing provides a more flexible approach to access the edit sites. We accessed one site via the front side circuitry of the DUT and the other through the backside silicon. A wafer piece was used for this dual-side edit to demonstrate relatively uncomplicated sample preparation for FIB access, and still allow wafer level probing afterward. The silicon was locally thinned by mechanical means over the specific die for backside FIB editing. Following the backside edit, the front side edit was performed, with minimal sample preparation. The modifications were validated following these edits, where Iddq and emission measurement were nominal.

Author(s):  
Romaneh Jalilian ◽  
David Mudd ◽  
Neil Torrez ◽  
Jose Rivera ◽  
Mehdi M. Yazdanpanah ◽  
...  

Abstract The sample preparation for transmission electron microscope can be done using a method known as "lift-out". This paper demonstrates a method of using a silver-gallium nanoneedle array for a quicker sharpening process of tungsten probes with better sample viewing, covering the fabrication steps and performance of needle-tipped probes for lift-out process. First, an array of high aspect ratio silver-gallium nanoneedles was fabricated and coated to improve their conductivity and strength. Then, the nanoneedles were welded to a regular tungsten probe in the focused ion beam system at the desired angle, and used as a sharp probe for lift-out. The paper demonstrates the superior mechanical properties of crystalline silver-gallium metallic nanoneedles. Finally, a weldless lift-out process is described whereby a nano-fork gripper was fabricated by attaching two nanoneedles to a tungsten probe.


Author(s):  
Q. Liu ◽  
H.B. Kor ◽  
Y.W. Siah ◽  
C.L. Gan

Abstract Dual-beam focused ion beam (DB-FIB) system is widely used in the semiconductor industry to prepare cross-sections and transmission electron microscopy (TEM) lamellae, modify semiconductor devices and verify layout. One of the factors that limits its success rate is sample charging, which is caused by a lack of conductive path to discharge the accumulated charges. In this paper, an approach using an insitu micromanipulator was investigated to alleviate the charging effects. With this approach, a simple front side semiconductor device modification was carried out and the corresponding stage current was monitored to correlate to the milling process.


1998 ◽  
Vol 4 (S2) ◽  
pp. 656-657 ◽  
Author(s):  
David W. Susnitzky ◽  
Kevin D. Johnson

The ongoing reduction of scale of semiconductor device structures places increasing demands on the sample preparation methods used for transmission electron microscopy (TEM). Much of the semiconductor industry's failure analysis and new process development effort requires specific transistor, metal or dielectric structures to be analyzed using TEM techniques. Focused ion beam (FIB) milling has emerged as a valuable technique for site-specific TEM sample preparation. FIB milling, typically with 25-50kV Ga+ ions, enables thin TEM samples to be prepared with submicron precision. However, Ga+ ion milling significantly modifies the surfaces of TEM samples by implantation and amorphization. Previous work using 90° milling angles has shown that Ga+ ion milling of Si produces a surface damage layer that is 280Å thick. This damage is problematical since the current generation of semiconductor devices requires TEM samples in the 500-1000Å thickness range.


Author(s):  
Dandan Wang ◽  
Hua Feng ◽  
Pik Kee Tan ◽  
Guorong Low ◽  
Khiam Oh Chong ◽  
...  

Abstract Focused Ion Beam is widely used in semiconductor industry for critical applications such as TEM sample preparation and circuit edit. In this paper, we introduce an automated failure analysis technique for high precision polishing at the wafer level. Using FIB, it is possible to precisely mill at a region of interest, capture images at the region of interest simultaneously and cut into the die directly to expose the exact failure without damaging other sections of the specimen.


2013 ◽  
Vol 753-755 ◽  
pp. 2578-2581
Author(s):  
Yan Chen ◽  
Li Bao An ◽  
Xiao Xia Yang

Ultra-precision machining is used for many engineering applications where the traditional processes fail to work. Focused ion beam (FIB) technology is a very important part of the ultra-precision machining. It can realize the precise positioning, microscopic observation and micro machining. This paper introduces the FIB system and its application. FIB system contains ion source, focusing and scanning equipment and sample station. FIB technique has many unique and important functions. It is widely used in semiconductor device fabrication and circuit failure analysis. It can realize sample etching, imaging, thin film deposited, ion implantation and micromachining.


2005 ◽  
Vol 13 (6) ◽  
pp. 40-41
Author(s):  

"The most advantageous feature of the ex-situ lift out method is throughput."A great deal of emphasis is placed on "throughput" in the microprocessor industry. Wafer sizes are getting larger and the costs of building them have increased astronomically. The transmission electron microscope (TEM) has become the essential tool for examining current microprocessor products. The TEM can only be effective if it has properly prepared specimens to put into it. In order to achieve the highest specimen preparation spatial resolution, the microprocessor industry has turned to focused ion beam (FIB) tools, either single or dual column, for TEM specimen preparation in applications ranging from process control to failure analysis, and on to semiconductor device metrology.


2002 ◽  
Vol 733 ◽  
Author(s):  
Brock McCabe ◽  
Steven Nutt ◽  
Brent Viers ◽  
Tim Haddad

AbstractPolyhedral Oligomeric Silsequioxane molecules have been incorporated into a commercial polyurethane formulation to produce nanocomposite polyurethane foam. This tiny POSS silica molecule has been used successfully to enhance the performance of polymer systems using co-polymerization and blend strategies. In our investigation, we chose a high-temperature MDI Polyurethane resin foam currently used in military development projects. For the nanofiller, or “blend”, Cp7T7(OH)3 POSS was chosen. Structural characterization was accomplished by TEM and SEM to determine POSS dispersion and cell morphology, respectively. Thermal behavior was investigated by TGA. Two methods of TEM sample preparation were employed, Focused Ion Beam and Ultramicrotomy (room temperature).


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Author(s):  
Romain Desplats ◽  
Timothee Dargnies ◽  
Jean-Christophe Courrege ◽  
Philippe Perdu ◽  
Jean-Louis Noullet

Abstract Focused Ion Beam (FIB) tools are widely used for Integrated Circuit (IC) debug and repair. With the increasing density of recent semiconductor devices, FIB operations are increasingly challenged, requiring access through 4 or more metal layers to reach a metal line of interest. In some cases, accessibility from the front side, through these metal layers, is so limited that backside FIB operations appear to be the most appropriate approach. The questions to be resolved before starting frontside or backside FIB operations on a device are: 1. Is it do-able, are the metal lines accessible? 2. What is the optimal positioning (e.g. accessing a metal 2 line is much faster and easier than digging down to a metal 6 line)? (for the backside) 3. What risk, time and cost are involved in FIB operations? In this paper, we will present a new approach, which allows the FIB user or designer to calculate the optimal FIB operation for debug and IC repair. It automatically selects the fastest and easiest milling and deposition FIB operations.


Author(s):  
Zixiao Pan ◽  
Wei Wei ◽  
Fuhe Li

Abstract This paper introduces our effort in failure analysis of a 200 nm thick metal interconnection on a glass substrate and covered with a passivation layer. Structural damage in localized areas of the metal interconnections was observed with the aid of focused ion beam (FIB) cross-sectioning. Laser ablation inductively coupled plasma mass spectroscopy (LA ICP-MS) was then applied to the problematic areas on the interconnection for chemical survey. LA ICP-MS showed direct evidence of localized chemical contamination, which has likely led to corrosion (or over-etching) of the metal interconnection and the assembly failure. Due to the high detection sensitivity of LA ICP-MS and its compatibility with insulating material analysis, minimal sample preparation is required. As a result, the combination of FIB and LA ICP-MS enabled successful meso-scale failure analysis with fast turnaround and reasonable cost.


Sign in / Sign up

Export Citation Format

Share Document