Advanced FIB Application—Automated, Precision Deprocessing for Failure Analysis

Author(s):  
Dandan Wang ◽  
Hua Feng ◽  
Pik Kee Tan ◽  
Guorong Low ◽  
Khiam Oh Chong ◽  
...  

Abstract Focused Ion Beam is widely used in semiconductor industry for critical applications such as TEM sample preparation and circuit edit. In this paper, we introduce an automated failure analysis technique for high precision polishing at the wafer level. Using FIB, it is possible to precisely mill at a region of interest, capture images at the region of interest simultaneously and cut into the die directly to expose the exact failure without damaging other sections of the specimen.

Author(s):  
Julien Goxe ◽  
Béatrice Vanhuffel ◽  
Marie Castignolles ◽  
Thomas Zirilli

Abstract Passive Voltage Contrast (PVC) in a Scanning Electron Microscope (SEM) or a Focused Ion Beam (FIB) is a key Failure Analysis (FA) technique to highlight a leaky gate. The introduction of Silicon On Insulator (SOI) substrate in our recent automotive analog mixed-signal technology highlighted a new challenge: the Bottom Oxide (BOX) layer, by isolating the Silicon Active Area from the bulk made PVC technique less effective in finding leaky MOSFET gates. A solution involving sample preparation performed with standard FA toolset is proposed to enhance PVC on SOI substrate.


Author(s):  
Roger Alvis ◽  
Jeff Blackwood ◽  
Sang-Hoon Lee ◽  
Matthew Bray

Abstract Semiconductor devices with critical dimensions less than 20nm are now being manufactured in volume. A challenge facing the failure analysis and process-monitoring community is two-fold. The first challenge of TEM sample prep of such small devices is that the basic need to end-point on a feature-of-interest pushes the imaging limit of the instrument being used to prepare the lamella. The second challenge posed by advanced devices is to prepare an artifact-free lamella from non-planar devices such as finFETs as well as from structures incorporating ‘non-traditional’ materials. These challenges are presently overcome in many advanced logic and memory devices in the focused ion beam-based TEM sample preparation processes by inverting the specimen prior to thinning to electron transparency. This paper reports a highthroughput method for the routine preparation of artifact-free TEM lamella of 20nm thickness, or less.


Author(s):  
C.S. Bonifacio ◽  
P. Nowakowski ◽  
R. Li ◽  
M.L. Ray ◽  
P.E. Fischione ◽  
...  

Abstract Fast and accurate examination from the bulk to the specific area of the defect in advanced semiconductor devices is critical in failure analysis. This work presents the use of Ar ion milling methods in combination with Ga focused ion beam (FIB) milling as a cutting-edge sample preparation technique from the bulk to specific areas by FIB lift-out without sample-preparation-induced artifacts. The result is an accurately delayered sample from which electron-transparent TEM specimens of less than 15 nm are obtained.


Author(s):  
Woo Jun Kwon ◽  
Jisu Ryu ◽  
Christopher H. Kang ◽  
Michael B. Schmidt ◽  
Nicholas Croy

Abstract Focused ion beam (FIB) microscopy is an essential technique for the site-specific sample preparation of atom probe tomography (APT). The site specific APT and automated APT sample preparation by FIB have allowed increased APT sample volume. In the workflow of APT sampling, it is very critical to control depth of the sample where exact region of interest (ROI) for accurate APT analysis. Very precise depth control is required at low kV cleaning process in order to remove the damaged layer by previous high kV FIB process steps. We found low kV cleaning process with 5 kV and followed by 2kV beam conditions delivers better control to reached exact ROI on Z direction. This understanding is key to make APT sample with fully automated fashion.


1997 ◽  
Vol 3 (S2) ◽  
pp. 357-358
Author(s):  
C. Amy Hunt

The demand for TEM analysis in semiconductor failure analysis is rising sharply due to the shrinking size of devices. A well-prepared sample is a necessity for getting meaningful results. In the past decades, a significant amount of effort has been invested in improving sample preparation techniques for TEM specimens, especially precision cross-sectioning techniques. The most common methods of preparation are mechanical dimpling & ion milling, focused ion beam milling (FIBXTEM), and wedge mechanical polishing. Each precision XTEM technique has important advantages and limitations that must be considered for each sample.The concept for both dimpling & ion milling and wedge specimen preparation techniques is similar. Both techniques utilize mechanical polishing to remove the majority of the unwanted material, followed by ion milling to assist in final polishing or cleaning. Dimpling & ion milling produces the highest quality samples and is a relatively easy technique to master.


Author(s):  
Mark A. Thompson ◽  
Calvin Chen ◽  
Chun-Cheng Tsao ◽  
Ming Han ◽  
Hun Lian Tsai

Abstract We present, a novel solution to focused ion beam (FIB) circuit edit, performed through the back and front surfaces of the same semiconductor device under test (DUT). This complementary dual-side FIB modification was performed at wafer level test, on a wafer piece, utilizing a coaxial photon-ion focused ion beam system. The DUT was found to have excessive Iddq leakage current due to a fault in a tri-state driver circuit, and was determined that two FIB edits were required to validate the proposed correction. Wafer level editing provides a more flexible approach to access the edit sites. We accessed one site via the front side circuitry of the DUT and the other through the backside silicon. A wafer piece was used for this dual-side edit to demonstrate relatively uncomplicated sample preparation for FIB access, and still allow wafer level probing afterward. The silicon was locally thinned by mechanical means over the specific die for backside FIB editing. Following the backside edit, the front side edit was performed, with minimal sample preparation. The modifications were validated following these edits, where Iddq and emission measurement were nominal.


Author(s):  
Steven B. Herschbein ◽  
Carmelo F. Scrudato ◽  
George K. Worth ◽  
Edward S. Hermann

Abstract The Focused Ion Beam (FIB) technique of internal modification for chip repair, layout verification, and internal signal probe access has become an integral part of the process for bringing advanced products to market. The pervasive switch from wire bond connections to single component flipchip solder bump mounting on high value products has greatly aided the task of FIB editing by placing the bare backside silicon of the die within easy reach. FIB chip circuit access begins with task-specific sample preparation. The package opening and silicon prep process is well defined and quite robust when full thickness chips are mounted to simple ceramic carriers. Unfortunately, the introduction of flexible organic laminate substrates and the development of stacked die packaging has further complicated the process. Multi-chip packages containing combinations of full thickness and thinned chips may be present. They could be wire-bond connected, or use Through-Silicon Vias (TSV) for double sided attachment. Multiple heat treatment cycles joining together materials with vastly different coefficients of thermal expansion (CTE) may result in severe package warpage and stress. All of these conditions and possible combinations have served to invalidate key elements of the established sample preparation process, and made each presented case unique. As the FIB team works to develop new precision techniques for internal circuitry access, the greater semiconductor packaging development and failure analysis community has benefited from the introduction of new tooling and methodologies.


1996 ◽  
Vol 4 (1) ◽  
pp. 8-9
Author(s):  
Dave Laken

In the November issue of this publication, we described how focused ion beam (FIB) microsurgery is used to successfully cross-section and prepare material-specific samples for SEM and TEM analysis. Material specific samples have two or more components possessing different characteristics, such as hardness and chemical etch or sputtering rates. Traditional sample preparation techniques (mechanical grinding and polishing, broad ion beam etching, and chemical etching) alter, delaminate, or destroy these samples.FIB handles the preparation of these difficult samples well because of its milling geometry and the high current density of the small beam.


Author(s):  
Marek Tuček ◽  
Martin Búran ◽  
Rostislav Váňa ◽  
Lukáš Hladík ◽  
Jozef Vincenc Oboňa

Abstract As the semiconductor industry demands higher throughput for failure analysis, there is a constant need to rapidly speed up the sample preparation workflows. Here we present extended capabilities of the standard Xe plasma Focused Ion Beam failure analysis workflows by implementing a standalone laser ablation tool. Time-to-sample advantages of such workflow is shown on four distinct applications: cross-sectioning of a large solder ball, cross-sectioning of a deeply buried wire bond, cross-sectioning of the device layer of an OLED display, and removing the MEMS silicon cap to access underlying structures. In all of these workflows we have shown significant decrease in required process time while altogether avoiding the disadvantages of corresponding mechanical and chemical methods.


Author(s):  
Lihong Cao ◽  
Loc Tran ◽  
Wallace Donna

Abstract This article describes how Focused Ion Beam (FIB) milling methodology enhances the capability of package-level failure analysis on flip-chip packages by eliminating the artifacts induced by using conventional mechanical techniques. Dual- Beam Focused Ion Beam (DB FIB) cross sections were successful in detecting failure mechanisms related either to the die/C4 bump or package defect inside the organic substrate. This paper outlines detailed sample preparation techniques prior to performing the DB FIB cross-sections, along with case studies of DB FIB cross-sections.


Sign in / Sign up

Export Citation Format

Share Document