A Study of SRAM Device Soft Failures Caused by Contact Volcano Defects Using Nanoprobing Analysis

Author(s):  
Yu Hsiang Shu ◽  
Vincent Huang ◽  
Chia Hsing Chao

Abstract Using nanoprobing techniques to accomplish transistor parametric data has been reported as a method of failure analysis in nanometer scale defect. In this paper, we focus on how to identify the influence of Contact high resistance on device soft failures using nanoprobing analysis, and showing that the equivalent mathematical models could be used to describe the corresponding electrical data in a device with Contact high resistance issue. A case study was presented to verify that Contact volcano defect caused Contact high resistance issue, and this issue can be identified via physical failure analysis (PFA) method (e.g. Transmission Electron Microscope and Focus Ion Beam techniques) and nanoprobing analysis method. Finally, we would explain the physical root cause of Contact volcano issue.

Author(s):  
Liang Hong ◽  
Jia Li ◽  
Haifeng Wang

Abstract This paper provides an innovative root cause failure analysis method that combines multiple failure analysis (FA) techniques to narrow down and expose the shorting location and allow the material analysis of the shorting defect. It begins with a basic electrical testing to narrow down shorting metal layers, then utilizing mechanical lapping to expose over coat layers. This is followed by optical beam induced resistance change imaging to further narrow down the shorting location. Scanning electron microscopy and optical imaging are used together with focused ion beam milling to slice and view through the potential shorting area until the shorting defect is exposed. Finally, transmission electron microscopy (TEM) sample is prepared, and TEM analysis is carried out to pin point the root cause of the shorting. This method has been demonstrated successfully on Western Digital inter-metal layers shorting FA.


Author(s):  
K. Li ◽  
P. Liu ◽  
J. Teong ◽  
M. Lee ◽  
H. L. Yap

Abstract This paper presents a case study on via high resistance issue. A logical failure analysis process EDCA (Effect, Defect, Cause, and Action) is successfully applied to find out the failure mechanism, pinpoint the root cause and solve the problem. It sets up a very good example of how to do tough failure analysis in a controllable way.


Author(s):  
Tsung-Te Li ◽  
Chao-Chi Wu ◽  
Jung-Hsiang Chuang ◽  
Jon C. Lee

Abstract This article describes the electrical and physical analysis of gate leakage in nanometer transistors using conducting atomic force microscopy (C-AFM), nano-probing, transmission electron microscopy (TEM), and chemical decoration on simulated overstressed devices. A failure analysis case study involving a soft single bit failure is detailed. Following the nano-probing analysis, TEM cross sectioning of this failing device was performed. A voltage bias was applied to exaggerate the gate leakage site. Following this deliberate voltage overstress, a solution of boiling 10%wt KOH was used to etch decorate the gate leakage site followed by SEM inspection. Different transistor leakage behaviors can be identified with nano-probing measurements and then compared with simulation data for increased confidence in the failure analysis result. Nano-probing can be used to apply voltage stress on a transistor or a leakage path to worsen the weak point and then observe the leakage site easier.


Author(s):  
H.J. Ryu ◽  
A.B. Shah ◽  
Y. Wang ◽  
W.-H. Chuang ◽  
T. Tong

Abstract When failure analysis is performed on a circuit composed of FinFETs, the degree of defect isolation, in some cases, requires isolation to the fin level inside the problematic FinFET for complete understanding of root cause. This work shows successful application of electron beam alteration of current flow combined with nanoprobing for precise isolation of a defect down to fin level. To understand the mechanism of the leakage, transmission electron microscopy (TEM) slice was made along the leaky drain contact (perpendicular to fin direction) by focused ion beam thinning and lift-out. TEM image shows contact and fin. Stacking fault was found in the body of the silicon fin highlighted by the technique described in this paper.


Author(s):  
Michael Woo ◽  
Marcos Campos ◽  
Luigi Aranda

Abstract A component failure has the potential to significantly impact the cost, manufacturing schedule, and/or the perceived reliability of a system, especially if the root cause of the failure is not known. A failure analysis is often key to mitigating the effects of a componentlevel failure to a customer or a system; minimizing schedule slips, minimizing related accrued costs to the customer, and allowing for the completion of the system with confidence that the reliability of the product had not been compromised. This case study will show how a detailed and systemic failure analysis was able to determine the exact cause of failure of a multiplexer in a high-reliability system, which allowed the manufacturer to confidently proceed with production knowing that the failure was not a systemic issue, but rather that it was a random “one time” event.


Author(s):  
Zhigang Song ◽  
Jochonia Nxumalo ◽  
Manuel Villalobos ◽  
Sweta Pendyala

Abstract Pin leakage continues to be on the list of top yield detractors for microelectronics devices. It is simply manifested as elevated current with one pin or several pins during pin continuity test. Although many techniques are capable to globally localize the fault of pin leakage, root cause analysis and identification for it are still very challenging with today’s advanced failure analysis tools and techniques. It is because pin leakage can be caused by any type of defect, at any layer in the device and at any process step. This paper presents a case study to demonstrate how to combine multiple techniques to accurately identify the root cause of a pin leakage issue for a device manufactured using advanced technology node. The root cause was identified as under-etch issue during P+ implantation hard mask opening for ESD protection diode, causing P+ implantation missing, which was responsible for the nearly ohmic type pin leakage.


Author(s):  
P. Tangyunyong ◽  
A.Y. Liang ◽  
A.W. Righter ◽  
D.L. Barton ◽  
J.M. Soden

Abstract Fluorescent microthermal imaging (FMI) involves coating a sample surface with a thin fluorescent film that, upon exposure to UV light source, emits temperature-dependent fluorescence [1-7]. The principle behind FMI was thoroughly reviewed at the ISTFA in 1994 [8, 9]. In two recent publications [10,11], we identified several factors in film preparation and data processing that dramatically improved the thermal resolution and sensitivity of FMI. These factors include signal averaging, the use of base mixture films, film stabilization and film curing. These findings significantly enhance the capability of FMI as a failure analysis tool. In this paper, we show several examples that use FMI to quickly localize heat-generating defects ("hot spots"). When used with other failure analysis techniques such as focused ion beam (FIB) cross sectioning and scanning electron microscope (SEM) imaging, we demonstrate that FMI is a powerful tool to efficiently identify the root cause of failures in complex ICs. In addition to defect localization, we use a failing IC to determine the sensitivity of FMI (i.e., the lowest power that can be detected) in an ideal situation where the defects are very localized and near the surface.


2021 ◽  
Author(s):  
Song Wang ◽  
Lawrence Khin Leong Lau ◽  
Wu Jun Tong ◽  
Kun An ◽  
Jiang Nan Duan ◽  
...  

Abstract This paper elucidates the importance of flow assurance transient multiphase modelling to ensure uninterrupted late life productions. This is discussed in details through the case study of shut-in and restart scenarios of a subsea gas well (namely Well A) located in South China Sea region. There were two wells (Well A and Well B) producing steadily prior to asset shut-in, as a requirement for subsea pipeline maintenance works. However, it was found that Well A failed to restart while Well B successfully resumed production after the pipeline maintenance works. Flow assurance team is called in order to understand the root cause of the failed re-start of Well A to avoid similar failure for Well B and other wells in this region. Through failure analysis of Well A, key root cause is identified and associated operating strategy is proposed for use for Well B, which is producing through the same subsea infrastructure. Transient multiphase flow assurance model including subsea Well A, subsea Well B, associated spools, subsea pipeline and subsea riser is developed and fully benchmarked against field data to ensure realistic thermohydraulics representations of the actual asset. Simulation result shows failed restart of Well A and successful restart of Well B, which fully matched with field observations. Further analysis reveals that liquid column accumulated within the wellbore of Well A associates with extra hydrostatic head which caused failed well restart. Through a series of sensitivity analysis, the possibility of successful Well A restart is investigated by manipulating topsides back pressure settings and production flowrates prior to shut-in. These serve as a methodology to systematically analyze such transient scenario and to provide basis for field operating strategy. The analysis and strategy proposed through detailed modelling and simulation serves as valuable guidance for Well B, should shut-in and restart operation is required. This study shows the importance of modelling prior to late life field operations, in order to avoid similar failed well restart, which causes significant production and financial impacts.


Sign in / Sign up

Export Citation Format

Share Document