scholarly journals Effect of prenatal administration of low dose antibiotics on gut microbiota and body fat composition of newborn mice

2018 ◽  
Vol 62 (2) ◽  
pp. 155-160 ◽  
Author(s):  
Ayumi Yoshimoto ◽  
Takashi Uebanso ◽  
Mutsumi Nakahashi ◽  
Takaaki Shimohata ◽  
Kazuaki Mawatari ◽  
...  
2012 ◽  
Vol 108 (8) ◽  
pp. 1382-1389 ◽  
Author(s):  
Tulika Arora ◽  
Jelena Anastasovska ◽  
Glen Gibson ◽  
Kieran Tuohy ◽  
Raj Kumar Sharma ◽  
...  

There is an increased interest in investigating the relationship between the gut microbiota and energy homeostasis. Probiotics are health beneficial microbes mainly categorised under the genusLactobacillusandBifidobacterium, which when administered in adequate amounts confer health benefits to the host, and have been implicated in various physiological functions. The potential role of probiotics in energy homeostasis is a current and an emerging area of research. In the present study,Lactobacillus acidophilusNCDC 13 was used to evaluate its anti-obesity potential in diet-induced obese (C57BL/6) mice. The probiotic bacterial culture was administered in Indian yogurt preparation called ‘dahi’, prepared using native starter cultures, and compared with control dahi containing only dahi starter cultures. The dietary intervention was followed for 8 weeks, and whole-body fat composition, and liver and muscle adiposity were measured using MRI. Changes in gut microbiota were assessed by fluorescentin situhybridisation in faeces and caecal contents. The feeding of the probiotic brought no changes in body-weight gain, food and dahi intake when compared with the control dahi-fed animals. No significant changes in body fat composition, liver and muscle adiposity were also observed. At the end of the dietary intervention, a significant increase (P < 0·05) in the number of totalBifidobacteriumwas observed in both faeces and caecal contents of mice as a result of probiotic dahi administration. Thus,L. acidophilusNCDC 13 supplementation could be beneficial in shifting the gut microbiota balance positively. However, its anti-obesity potential could not be established in the present study and warrants further exploration.


Gut ◽  
2020 ◽  
Vol 69 (10) ◽  
pp. 1807-1817 ◽  
Author(s):  
Jodi E Nettleton ◽  
Nicole A Cho ◽  
Teja Klancic ◽  
Alissa C Nicolucci ◽  
Jane Shearer ◽  
...  

ObjectiveWe examined the impact of maternal low-dose aspartame and stevia consumption on adiposity, glucose tolerance, gut microbiota and mesolimbic pathway in obese dams and their offspring.DesignFollowing obesity induction, female Sprague-Dawley rats were allocated during pregnancy and lactation to: (1) high fat/sucrose diet (HFS) +water (obese-WTR); (2) HFS +aspartame (obese-APM; 5–7 mg/kg/day); (3) HFS +stevia (obese-STV; 2–3 mg/kg/day). Offspring were weaned onto control diet and water and followed until 18 weeks. Gut microbiota and metabolic outcomes were measured in dams and offspring. Cecal matter from offspring at weaning was used for faecal microbiota transplant (FMT) into germ-free (GF) mice.ResultsMaternal APM and STV intake with a HFS diet increased body fat in offspring at weaning and body weight long-term with APM. Maternal APM/HFS consumption impaired glucose tolerance in male offspring at age 8 weeks and both APM and STV altered faecal microbiota in dams and offspring. Maternal obesity/HFS diet affected offspring adiposity and glucose tolerance more so than maternal LCS consumption at age 12 and 18 weeks. APM and STV altered expression of genes in the mesolimbic reward system that may promote consumption of a palatable diet. GF mice receiving an FMT from obese-APM and obese-STV offspring had greater weight gain and body fat and impaired glucose tolerance compared with obese-WTR.ConclusionMaternal low-calorie sweetener consumption alongside HFS may disrupt weight regulation, glucose control and gut microbiota in dams and their offspring most notably in early life despite no direct low-calorie sweetener consumption by offspring.


2014 ◽  
Vol 52 (01) ◽  
Author(s):  
A Kempinska ◽  
M Krawczyk ◽  
M Klak ◽  
M Blatkiewicz ◽  
F Lammert ◽  
...  

2019 ◽  
Vol 31 (3) ◽  
pp. 212-218

Both insulin and leptin are major contributors for the body energy balance. Obesity is a state of energy imbalance and is also associated with changes in both insulin sensitivity and leptin sensitivity. The aim of this study was to find out the relationship between insulin sensitivity and body fat composition, and leptin sensitivity in non-obese and obese adults. A total of 86 adults participated: 42 non-obese and 44 over-weight/obese. Body fat (BF) percent was determined by skinfold method. Fasting plasma glucose was analyzed by glucose oxidase-phenol and 4 aminophenazone (GOD-PAP) method using spectro-photometer, fasting serum insulin and leptin concentrations by direct sandwich ELISA method and resting energy expenditure (REE) by indirect calorimetry. Leptin sensitivity index and insulin sensitivity were expressed as REE : Leptin ratio and homeostatic model assessment-insulin resistance (HOMA-IR), respectively. It was found that median value of HOMA-IR was significantly higher [2.93 vs 1.72, p<0.01] and leptin sensitivity was significantly lower [116.76 vs 265.66, p<0.001] in the overweight/obese adults than the non-obese adults, indicating that insulin sensitivity and leptin sensitivity were markedly reduced in overweight/obese adults in compare to non-obese adults. There was a moderate degree of positive relationship between HOMA-IR and BF only in the overweight/obese (ρ=0.509, n=44, p<0.001) and all adults (ρ=0.39, n=86, p<0.001). Similarly, a weak negative relationship between leptin sensitivity index and HOMA-IR was found in the overweight/obese (ρ=-0.328, n=44, p<0.05) and all adults (ρ=-0.35, n=86, p<0.01). It can be concluded that the insulin sensitivity was adiposity dependent, but, it did not depend on leptin sensitivity.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1427
Author(s):  
Junhui Zhang ◽  
Fengqin Feng ◽  
Minjie Zhao

Glycerol monocaprylate (GMC) is a glycerol derivative of medium-chain fatty acids (MCFAs) and is widely used as a preservative in food processing. However, GMC and its hydrolytic acid (octylic acid) have antibacterial properties that may affect the physiology and intestinal microecology of the human body. Therefore, in this study, the effects of two different dosages of GMC (150 and 1600 mg kg−1) on glucose, lipid metabolism, inflammation, and intestinal microecology of normal diet-fed C57BL/6 mice were comprehensively investigated. The obtained results showed that the level of triglycerides (TGs) in the low-dose group down-regulated significantly, and the anti-inflammatory cytokine interleukin 10 (IL-10) significantly increased, while the pro-inflammatory cytokines monocyte chemotactic protein 1 (MCP-1) and interleukin 1beta (IL-1β) in the high-dose group were significantly decreased. Importantly, GMC promoted the α-diversity of gut microbiota in normal-diet-fed mice, regardless of dosages. Additionally, it was found that the low-dose treatment of GMC significantly increased the abundance of Lactobacillus, while the high-dose treatment of GMC significantly increased the abundance of SCFA-producers such as Clostridiales, Lachnospiraceae, and Ruminococcus. Moreover, the content of short-chain fatty acids (SCFAs) was significantly increased by GMC supplementation. Thus, our research provides a novel insight into the effects of GMC on gut microbiota and physiological characteristics.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Luisa Saldana Ortega ◽  
Kathryn E. Bradbury ◽  
Amanda J. Cross ◽  
Jessica S. Morris ◽  
Marc J. Gunter ◽  
...  

Author(s):  
Wan Hafizah W Jusof ◽  
Nuqman Mursyid Ramli

The prevalence of obesity has increased worldwide, leading to an increased risk of many serious illnesses, including diabetes, heart disease, and certain cancers. The changes of dietary patterns and lifestyle habits especially among young generation may contribute to this problem. This study was conducted to investigate the impacts of dietary patterns and lifestyle habits on total body fat composition among UniKL RCMP students.The self-administered questionnaires were distributed among 71 students (42.3% male and 57.7% female) by convenience sampling method to identify their dietary pattern and lifestyle habits. Bioelectrical Impedance Analysis Method was used to assess body fat composition. The results showed that most of the students (52.1%) consumed 2 meals daily, which contained carbohydrates, proteins, fatty foods, and beverages, but a low intake of fruits and vegetables. The majority of the students skipped breakfast and ate lunch as their main meal. For lifestyle habits, 77.5% of students preferred to do inactive activity during leisure time, while only 2.8% preferred to do exercise. The mean body fat percentage (% BF) for male students was 21.13 + 1.30, which is classified as high, while for females, the mean % BF was 26.71 + 1.25, which is classified as normal. The majority of the students did not practice healthy eating and lifestyle habits, and these factors may have contributed to the high body fat composition in male students. Therefore, the university is suggested to provide more programs such as good lifestyle habits and nutrition educations campaigns to increase awareness among the students.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Naresh C. Rao ◽  
Hallie Zwibel ◽  
Jenny Berezanskaya ◽  
Paul Pena ◽  
Min-Kyung Jung

Abstract Context Comprehensive sports medicine care goes beyond the treatment of injuries resulting from athletic activities. Ultimately, it is a competence that includes knowledge in physical therapy, training, nutrition, coaching, motivation, competition, mentoring, psychology, and spirituality that allows the physician and patient to collaborate on promoting the patient’s health goals. The current literature demonstrates a lack of knowledge in the Osteopathic Primary Care Sports Medicine Model’s effectiveness in performance. Objectives To determine whether a comprehensive osteopathic primary care sports medicine approach can improve performance and health outcomes in collegiate athletes. Methods A randomized controlled trial commenced just prior to the start of the lacrosse season and concluded at the end of the season. All the New York Institute of Technology (NYIT) collegiate lacrosse players were educated first in a 1-day seminar of the core competencies, and all participants had access to ask questions on their own volition. Then they were randomized into two groups, either the experimental group receiving the direct osteopathic primary care sports medicine intervention (n=18) or the control group not having active intervention (n=19). Also, the overall team winning percentage for that season was computed and compared to that for the previous years and the following year. Participants were assessed before and after the intervention with the Patient Health Questionnaire (PHQ-9), the 36-Item Short Form Survey (SF-36), custom Osteopathic Primary Care Sports Medicine questionnaire, and body fat composition, and their changes were compared between the experimental group and the control group. Collected data were analyzed using the repeated-measures analysis of variance. Results Thirty-seven participants were enrolled in the study. After 14 participants were excluded due to being lost to follow-up, 23 athlete records were analyzed. The winning percentage of the team was highest during the year of the study period time than in the 3 previous years and the following year. The test group did not have any statistically significant change in the PHQ-9, SF-36, custom Osteopathic Primary Care Sports Medicine questionnaire, as well as in body fat composition. Conclusions When used during a collegiate lacrosse season, this Osteopathic Primary Care Sports Medicine intervention did not significantly improve health outcomes. This preliminary study, despite its limitations in compliance and study population size, did demonstrate improvement in overall team performance when comparing the intervention sport season to other seasons but was not statistically significantly. Therefore, further studies are warranted to improve the understanding in this approach to athlete health outcomes and performance.


2021 ◽  
Author(s):  
Jielong Guo ◽  
Xue Han ◽  
Yilin You ◽  
Weidong Huang ◽  
Zhan Jicheng

Abstract BackgroundLow-dose antibiotic contamination in animal food is still a severe food safety problem worldwide. Penicillin is one of the main classes of antibiotics being detected in food. Previous studies have shown that transient exposure of low-dose penicillin (LDP) during early life resulted in metabolic syndrome (MetS) in mice. However, the underlying mechanism(s) and efficient approaches to counteracting this are largely unknown.MethodsWild-type (WT) or secretory IgA (SIgA)-deficient (Pigr-/-) C57BL/6 mice were exposed to LDP or not from several days before birth to 30 d of age. Five times of FMT or probiotics (a mixture of Lactobacillus bulgaricus and L. rhamnosus GG) treatments were applied to parts of these LDP-treated mice from 12 d to 28 d of life. Bacterial composition from different regions (mucosa and lumen) of the colon and ileum were analyzed through 16S rDNA sequencing. Intestinal IgA response was analyzed. Multiple parameters related to MetS were also determined. In addition, germ-free animals and in vitro tissue culture were also used to determine the correlations between LDP, gut microbiota (GM) and intestinal IgA response.ResultsLDP disturbed the intestinal bacterial composition, especially for ileal mucosa, the main inductive and effective sites of IgA response, in 30-d-old mice. The alteration of early GM resulted in a persistent inhibition of the intestinal IgA response, leading to a constant reduction of fecal and caecal SIgA levels throughout the 25-week experiment, which is early life-dependent, as transfer of LDP-GM to 30 d germ-free mice only resulted in a transient reduction in fecal SIgA. LDP-induced reduction in SIgA led to a decrease in IgA+ bacteria and a dysbiosis in the ileal mucosal samples of 25 week wild-type but not Pigr-/- mice. Moreover, LDP also resulted in increases in ileal bacterial encroachment and adipose inflammation, along with an enhancement of diet-induced MetS in an intestinal SIgA-dependent manner. Furthermore, several times of FMT or probiotic treatments during LDP treatment are efficient to fully (for FMT) or partially (for probiotics) counteract the LDP-effect on both GM and metabolism.ConclusionsEarly-life LDP-induced enhancement of diet-induced MetS is mediated by intestinal SIgA, which could be (partially) restored by FMT or probiotics treatment.


Sign in / Sign up

Export Citation Format

Share Document