Physical bases of packing of frozen clods of soil in ground massifs in transport and hydraulic structures

2021 ◽  
pp. 127-135
Author(s):  
A. N. Shuvaev ◽  
M. V. Panova ◽  
Ya. A. Pronozin

The current regulatory documents for infrastructure construction indicate the use of only thawed, mainly sandy soils. When erecting embankments during the winter period, a limited number of applied frozen soils are allowed. In this case, the stability and strength of the soil massif decrease. The absence of thawed soils in the regions of Siberia and the Arctic requires an expansion of the types of soils used, one of which is frozen soils. We have developed the designs of the subgrade that allow using frozen soils, enclosed in geosynthetic cages or without them. Increasing the stability and strength of the embankment by creating a dense soil skeleton is one of the scientific issues, which is solved in this article by applying the theory of granular media. In practice, the formation of dense systems from frozen soils is based on two principles: the method of dense mixtures and the method of impregnation, where the main layer of frozen soil is impregnated from above with dry frozen soils. Almost by selection of the composition, you can achieve the maximum density.

2018 ◽  
Vol 6 (3) ◽  
pp. 20-28
Author(s):  
Faisal Al Tabatabaie ◽  
Dhabia Sabeeh Al Waily

The use of cutoffs underneath the hydraulic structures is considered a safe solution to ensure the stability of hydraulic structure against uplift pressure and piping phenomenon in addition to the sliding and overturning forces of the water. These cutoffs are used at critical sections underneath the floor of hydraulic structure to substitute with their depths the horizontal lengths of the creep line of the hydraulic structure base. In this paper, the experimental method- by using electrical analogue model- was carried out to plot the flow net and study the efficiency of the front and rear faces of the cutoffs for dissipating the potential energy of the percolating water underneath the floor of hydraulic structure. An electrical analogue model which was used in this study consists of twenty five models with different depths of upstream and downstream cutoffs. After plotting the flow net for all models, it is concluded that the efficiency of the inner sides are less than that of the outer sides which were investigated before in this topic of this work that both faces reduction values in the uplift pressure are considered the same, where the efficiency of the outer face of upstream cutoff is (70.35) % and for the inner face is (29.64)%, while for the downstream cutoff the efficiency for the outer face is (76.21)% and for the inner face is (23.79)% .


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuping Li ◽  
Xiaoju Liang ◽  
Xuguo Zhou ◽  
Yu An ◽  
Ming Li ◽  
...  

AbstractGlycyrrhiza, a genus of perennial medicinal herbs, has been traditionally used to treat human diseases, including respiratory disorders. Functional analysis of genes involved in the synthesis, accumulation, and degradation of bioactive compounds in these medicinal plants requires accurate measurement of their expression profiles. Reverse transcription quantitative real-time PCR (RT-qPCR) is a primary tool, which requires stably expressed reference genes to serve as the internal references to normalize the target gene expression. In this study, the stability of 14 candidate reference genes from the two congeneric species G. uralensis and G. inflata, including ACT, CAC, CYP, DNAJ, DREB, EF1, RAN, TIF1, TUB, UBC2, ABCC2, COPS3, CS, R3HDM2, were evaluated across different tissues and throughout various developmental stages. More importantly, we investigated the impact of interactions between tissue and developmental stage on the performance of candidate reference genes. Four algorithms, including geNorm, NormFinder, BestKeeper, and Delta Ct, were used to analyze the expression stability and RefFinder, a comprehensive software, provided the final recommendation. Based on previous research and our preliminary data, we hypothesized that internal references for spatio-temporal gene expression are different from the reference genes suited for individual factors. In G. uralensis, the top three most stable reference genes across different tissues were R3HDM2, CAC and TUB, while CAC, CYP and ABCC2 were most suited for different developmental stages. CAC is the only candidate recommended for both biotic factors, which is reflected in the stability ranking for the spatio (tissue)-temporal (developmental stage) interactions (CAC, R3HDM2 and DNAJ). Similarly, in G. inflata, COPS3, R3HDM2 and DREB were selected for tissues, while RAN, COPS3 and CS were recommended for developmental stages. For the tissue-developmental stage interactions, COPS3, DREB and ABCC2 were the most suited reference genes. In both species, only one of the top three candidates was shared between the individual factors and their interactions, specifically, CAC in G. uralensis and COPS3 in G. inflata, which supports our overarching hypothesis. In summary, spatio-temporal selection of reference genes not only lays the foundation for functional genomics research in Glycyrrhiza, but also facilitates these traditional medicinal herbs to reach/maximize their pharmaceutical potential.


Author(s):  
Dandan Li ◽  
Zhiqiang Zuo ◽  
Yijing Wang

Using an event-based switching law, we address the stability issue for continuous-time switched affine systems in the network environment. The state-dependent switching law in terms of the region function is firstly developed. We combine the region function with the event-triggering mechanism to construct the switching law. This can provide more candidates for the selection of the next activated subsystem at each switching instant. As a result, it is possible for us to activate the appropriate subsystem to avoid the sliding motion. The Zeno behavior for the switched affine system can be naturally ruled out by guaranteeing a positive minimum inter-event time between two consecutive executions of the event-triggering threshold. Finally, two numerical examples are given to demonstrate the effectiveness of the proposed method.


2021 ◽  
Vol 213 ◽  
pp. 106676
Author(s):  
Saeed Mohammadiun ◽  
Guangji Hu ◽  
Abdorreza Alavi Gharahbagh ◽  
Reza Mirshahi ◽  
Jianbing Li ◽  
...  

2019 ◽  
Vol 23 (12) ◽  
pp. 5017-5031 ◽  
Author(s):  
Aaron A. Mohammed ◽  
Igor Pavlovskii ◽  
Edwin E. Cey ◽  
Masaki Hayashi

Abstract. Snowmelt is a major source of groundwater recharge in cold regions. Throughout many landscapes snowmelt occurs when the ground is still frozen; thus frozen soil processes play an important role in snowmelt routing, and, by extension, the timing and magnitude of recharge. This study investigated the vadose zone dynamics governing snowmelt infiltration and groundwater recharge at three grassland sites in the Canadian Prairies over the winter and spring of 2017. The region is characterized by numerous topographic depressions where the ponding of snowmelt runoff results in focused infiltration and recharge. Water balance estimates showed infiltration was the dominant sink (35 %–85 %) of snowmelt under uplands (i.e. areas outside of depressions), even when the ground was frozen, with soil moisture responses indicating flow through the frozen layer. The refreezing of infiltrated meltwater during winter melt events enhanced runoff generation in subsequent melt events. At one site, time lags of up to 3 d between snow cover depletion on uplands and ponding in depressions demonstrated the role of a shallow subsurface transmission pathway or interflow through frozen soil in routing snowmelt from uplands to depressions. At all sites, depression-focused infiltration and recharge began before complete ground thaw and a significant portion (45 %–100 %) occurred while the ground was partially frozen. Relatively rapid infiltration rates and non-sequential soil moisture and groundwater responses, observed prior to ground thaw, indicated preferential flow through frozen soils. The preferential flow dynamics are attributed to macropore networks within the grassland soils, which allow infiltrated meltwater to bypass portions of the frozen soil matrix and facilitate both the lateral transport of meltwater between topographic positions and groundwater recharge through frozen ground. Both of these flow paths may facilitate preferential mass transport to groundwater.


2021 ◽  
Vol 2 (11) ◽  
pp. 39-47
Author(s):  
Valentina P. Toichkina ◽  

The article examines the external (exogenous) and internal (endogenous) sources of self-development of external migration, which is the most important resource for the formation of the size and demographic structure of the population of the Arctic regions. It is proposed to consider migration flows from the standpoint of their definition as sources (external and internal) of self-development. The coefficients of the intensity of migration flows are proposed to assess the sources of self-development. The analysis of the sources of self-development of external migration and the analysis of sustainable self-development of external migration for two four-year periods are carried out. The trends of changes in the migration situation have been determined. The conditions for the influence of sources of self-development on changes in the stability of external migration are determined, the method of determining which is a mechanism for analyzing and predicting migration processes.


2021 ◽  
pp. 073401682110383
Author(s):  
Bruno Truzzi ◽  
Marcelo Justus ◽  
Henrique C. Kawamura ◽  
Thomas V. Conti

This article investigates the relationship between the perception of violence and the spending on security goods and services in households. Individual microdata from a random national survey on family budget carried out in Brazil in 2008-2009 were used for modeling the household spending using two instrumental variables. The stability of results was checked by applying the Lasso-Gaussian regularization method in the selection of the statistically significant variables. Positive relationships were found between household spending on security goods and services and (i) the fear of insecurity at the household level, (ii) the neighbors’ spending on security, and (iii) the registered criminality, but no evidence was found on the relationship between the role of police on household spending on security goods and services.


2016 ◽  
Vol 22 (2) ◽  
pp. 324-341
Author(s):  
Rafał Gawałkiewicz ◽  
Anna Szafarczyk

Mounds, as anthropogenic constructions of a very delicate structure, are subdued to constant changes, which, due to the impact of external factors (prolonged precipitation, tremors) are subdued to deformations in the form of mass movements. These phenomena usually have the character of mild soil creep in time and sometimes, as a result of rapid loss of stability, they are seriously damaged by landslide. This phenomenon causes temporary exclusion of the object from use. In the framework of the protection of these objects, the maintenance was carried out within the preventive measures referring to the construction and surveying monitoring of the geometry changes in time, as a result of phenomena taking place in the ground medium under the influence of environmental factors causing strains. The process of the deformation of mounds is similar to the characteristic, according to the Terzagie's theory. The application of surveying technologies of high precision allows the monitoring of changes in their geometry in time. The properly defined study area and the proper selection of measurement technology in the aspect of the accuracy of the prediction of changes, can efficiently help in defining the scale of deformations in the decisive process referring to the way of efficient protection of barrows. The article presents the results of point monitoring carried out with surveying technologies within 11 measurement series carried out on the selected measurement base of the Wanda Mound. The use of measurement technologies of integrated and specialist software, allows complex assessment of the degree of deformation and the trends of these changes in time, as well as identifying anomaly zones in the framework of the landslide monitoring.


Author(s):  
Dianshi Feng ◽  
Sze Dai Pang ◽  
Jin Zhang

The increasing marine activities in the Arctic has resulted in a growing demand for reliable structural designs in this region. Ice loads are a major concern to the designer of a marine structure in the arctic, and are often the principal factor that governs the structural design [Palmer and Croasdale, 2013]. With the rapid advancement in computational power, numerical method is becoming a useful tool for design of offshore structures subjected to ice actions. Cohesive element method (CEM), a method which has been widely utilized to simulate fracture in various materials ranging from metals to ceramics and composites as well as bi-material systems, has been recently applied to predict ice-structure interactions. Although it shows promising future for further applications, there are also some challenging issues like high mesh dependency, large variation in cohesive properties etc., yet to be resolved. In this study, a 3D finite element model with the use of CEM was developed in LS-DYNA for simulating ice-structure interaction. The stability of the model was investigated and a parameter sensitivity analysis was carried out for a better understanding of how each material parameter affects the simulation results.


2020 ◽  
Vol 86 (5) ◽  
Author(s):  
O. E. López ◽  
L. Guazzotto

The present work considers the stability of a high- $\beta$ , large aspect ratio, circular plasma with diffuse profiles for the safety factor and the angular toroidal frequency (López & Guazzotto, Phys. Plasmas, vol. 24, 032501). An application of the Frieman–Rotenberg formalism results in a system of scalar eigenmode equations whose coupling is retained at the plasma–vacuum transition but is disregarded across the plasma column, which is a standard practice. The solution technique consists of a multidimensional shooting method for the poloidal harmonics; robust initial guesses are constructed by solving the dispersion relation in the static scenario with vanishing magnetic shear. Flow shear appears as a high- $\beta$ toroidal contribution, and we illustrate its destabilizing influence on $n=1$ external kink modes in the presence of ideal and resistive walls. Internal resonances are avoided by means of the selection of appropriate equilibrium parameters. The stabilizing influence of a finite positive average magnetic shear is also exemplified.


Sign in / Sign up

Export Citation Format

Share Document