scholarly journals Adsorption Capacity of Low Cost Activated Carbon For Removal of Copper Ions From Aqueous Media

2018 ◽  
Vol 02 (03) ◽  
pp. 41-48 ◽  
Author(s):  
Shah Muhammad Haroon ◽  
◽  
Sammia Shahid ◽  
Fakhra Ashraf
2022 ◽  
Vol 1048 ◽  
pp. 459-467
Author(s):  
Sadamanti Sireesha ◽  
Utkarsh Upadhyay ◽  
Inkollu Sreedhar ◽  
K.L. Anitha

Heavy metal contamination has been one of the primary environmental concerns for many years in most developing countries. As the industries continue to search for low-cost and efficient adsorbents to treat their effluents contaminated with these toxic metal ions, biomass-based adsorbents have gained much attention. This work exploits such ten different biomass-based adsorbents (namely, Karanja de-oiled cake, Neem de-oiled cake, Neem leaves, Moringa Leaves, Bagasse, Mango Kernel, Wheat Bran, Eucalyptus, Fly ash, and Corn cob) for adsorption of copper ions in particular. Further, selected adsorbents (namely Karanja de-oiled cake, Neem de-oiled cake, Bagasse, Wheat Bran and Mango Kernel) were taken to the next stage and modified to biochar and tested again for copper removal. Among the biomass-based adsorbents, the highest adsorption capacity was observed for Neem de-oiled cake (equal to 9.6 mg/g). While for biochar-based adsorbents, Bagasse showed the highest adsorption capacity for copper (equivalent to 13.0 mg/g).


Author(s):  
Nawwarah Mokti ◽  
Azry Borhan ◽  
Siti Nur Azella Zaine ◽  
Hayyiratul Fatimah Mohd Zaid

The use of an activating agent in chemical activation of activated carbon (AC) production is very important as it will help to open the pore structure of AC as adsorbents and could enhance its performance for adsorption capacity. In this study, a pyridinium-based ionic liquid (IL), 1-butylpyridinium bis(trifluoromethylsulfonyl) imide, [C4Py][Tf2N] has been synthesized by using anion exchange reaction and was characterized using few analyses such as 1H-NMR, 13C-NMR and FTIR. Low-cost AC was synthesized by chemical activation process in which rubber seed shell (RSS) and ionic liquid [C4Py][Tf2N] were employed as the precursor and activating agent, respectively. AC has been prepared with different IL concentration (1% and 10%) at 500°C and 800°C for 2 hours. Sample AC2 shows the highest SBET and VT which are 392.8927 m2/g and 0.2059 cm3/g respectively. The surface morphology of synthesized AC can be clearly seen through FESEM analysis. A high concentration of IL in sample AC10 contributed to blockage of pores by the IL. On the other hand, the performance of synthesized AC for CO2 adsorption capacity also studied by using static volumetric technique at 1 bar and 25°C. Sample AC2 contributed the highest CO2 uptakes which is 50.783 cm3/g. This current work shows that the use of low concentration IL as an activating agent has the potential to produce porous AC, which offers low-cost, green technology as well as promising application towards CO2 capture.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 882 ◽  
Author(s):  
Haifeng Wen ◽  
Daofang Zhang ◽  
Lin Gu ◽  
Haixiang Yu ◽  
Minmin Pan ◽  
...  

Sludge-derived activated carbon (SAC) was prepared by Fenton activation and calcination, and used as adsorbent to eliminate Eriochrome Black T (EBT) dye from aqueous media. The characterization results indicated that the produced SAC had a porous structure, high specific surface area, and abundant functional groups on its surface. The adsorption process was affected by pH, adsorbent dosage, time, and temperature. The adsorption capacity increased with temperature, and the highest adsorption capacity reached 178.2 mg·g−1 in 48 h at 318 K and pH 6. The results of the adsorption isotherm, kinetic, and thermodynamic analyses revealed that the adsorption of EBT onto SAC was naturally endothermic and spontaneous, involved both physical and chemical processes, and belonged mostly to the multilayer type of adsorption.


2019 ◽  
Vol 41 (1) ◽  
pp. 62-62
Author(s):  
Farida Bouremmad Farida Bouremmad ◽  
Abdennour Bouchair Abdennour Bouchair ◽  
Sorour Semsari Parapari Sorour Semsari Parapari ◽  
Shalima Shawuti and Mehmet Ali Gulgun Shalima Shawuti and Mehmet Ali Gulgun

Biosorbents can be an alternative to activated carbon. They are derived from agricultural by-products or aquatic biomass. They are low cost and they may have comparable performances to those of activated carbon. The present study focuses on the characterization of the Corallina Elongata (CE) alga and its adsorption performance for Methylene Blue (MB), this alga is found in abundance at the Mediterranean coast of the city of Jijel in eastern Algeria. The dried alga was characterized using various characterization techniques such as DTA, TG, FTIR, XRD, SEM and EDX, which showed that the material consists essentially of a calcite containing magnesium. Batch adsorption studies were carried out and the effect of experimental parameters Such as pH, initial dye concentration, temperature, adsorbent dose and contact time, on the adsorption of MB was studied. The kinetic experimental data were found to conform to the pseudo-second-order model with good correlation and equilibrium data were best fitted to The Langmuir model, with a maximum adsorption capacity of 34.4 mg/g. The adsorption isotherms at various temperatures allowed the determination of certain thermodynamic parameters (ΔG, ΔH and ΔS). Finally, the adsorption results showed a good affinity between CE and MB with a high adsorption capacity.


RSC Advances ◽  
2016 ◽  
Vol 6 (82) ◽  
pp. 78936-78946 ◽  
Author(s):  
Song Cheng ◽  
Libo Zhang ◽  
Hongying Xia ◽  
Jinhui Peng ◽  
Jianhua Shu ◽  
...  

A and B are Langmuir isotherm and pseudo-second-order model. We conclude that MB adsorption capacity of Fe-activated carbon is bigger than raw activated carbon, indicating that Fe-activated carbon has better MB removal efficiency.


2012 ◽  
Vol 549 ◽  
pp. 703-706
Author(s):  
De Yi Zhang ◽  
Jing Wu ◽  
Bai Yi Chen ◽  
He Ming Luo ◽  
Kun Jie Wang ◽  
...  

In this paper, a novel carbon/bentonite composite was prepared using sucrose as carbon source and bentonite as raw material. The characterization results shown that plenty of carbon particles distribute on the surface of the composite, and an abundant of functional groups, such as SO3H, carboxylic and hydroxyl groups, were successfully introduced onto the surface of the prepared composite. The adsorption capacity of the prepared composite for typical heavy metal ions and methylene blue deys also was investigated and compared with activated carbon and bentonite, the results show that the composite shows excellent adsorprion performance for heavy metal ions, and the adsorption capacity for Cu2+and Ni2+ increase by 136% and 591% than natural bentonite, respectSuperscript textively. The prepared composite with excellent adsorption performance could be used as a low-cost alternative to activated carbon for the treatment of heavy metal ions polluted wastewater.


2013 ◽  
Vol 30 ◽  
pp. 13-23 ◽  
Author(s):  
Sahira Joshi ◽  
Mandira Adhikari ◽  
Raja Ram Pradhananga

The potentials of activated carbon derived from Lapsi (Choerospondias axillaries) seed stone after impregnation with zirconium for adsorptive removal of fluoride is presented. Activated carbons from Lapsi seed stone were prepared by three different techniques. Firstly by directly burning in limited supply of air, secondly by treating with a mixture of conc. H2SO4 and HNO3 (in the ratio of 1:1 by weight) and thirdly by activation with zinc chloride (in the ratio of 1:1 by weight) followed by carbonization at 400°C and 500°C under nitrogen atmosphere. Thus prepared carbons were impregnated with zirconyl oxychloride and effects of pH, adsorbent dose, and contact time and adsorbate concentration for the removal of fluoride were evaluated by batch mode. The optimum pH for adsorption of fluoride was observed at pH 3-4, and a minimum contact time for the maximum defluoridation was found to be 180 min. The Langmuir and Freundlich isotherms were used to describe adsorption equilibrium. Zirconium impregnation increased the fluoride adsorption capacity of carbon to considerable extent. Among carbon prepared by three different techniques, the carbon prepared from zinc chloride activation followed by carbonization showed relatively higher fluoride adsorption capacity. From the experiment it is concluded that activated carbon prepared from Lapsi seed is an efficient, low-cost alternative to commercial activated carbon for defluoridation of water.DOI: http://dx.doi.org/10.3126/jncs.v30i0.9330Journal of Nepal Chemical Society Vol. 30, 2012 Page:  13-23 Uploaded date: 12/16/2013    


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4430
Author(s):  
Nor Hakimin Abdullah ◽  
Mazlan Mohamed ◽  
Norshahidatul Akmar Mohd Shohaimi ◽  
Azwan Mat Lazim ◽  
Ahmad Zamani Abdul Halim ◽  
...  

The presence of organic dyes from industrial wastewater can cause pollution and exacerbate environmental problems; therefore, in the present work, activated carbon was synthesized from locally available oil palm trunk (OPT) biomass as a low-cost adsorbent to remove synthetic dye from aqueous media. The physical properties of the synthesized oil palm trunk activated carbon (OPTAC) were analyzed by SEM, FTIR-ATR, and XRD. The concurrent effects of the process variables (adsorbent dosage (g), methylene blue (MB) concentration (mg/L), and contact time (h)) on the MB removal percentage from aqueous solution were studied using a three-factor three-level Box–Behnken design (BBD) of response surface methodology (RSM), followed by the optimization of MB adsorption using OPTAC as the adsorbent. Based on the results of the analysis of variance (ANOVA) for the three parameters considered, adsorbent dosage (X1) is the most crucial parameter, with an F-value of 1857.43, followed by MB concentration (X2) and contact time (X3) with the F-values of 95.60 and 29.48, respectively. Furthermore, the highest MB removal efficiency of 97.9% was achieved at the optimum X1, X2, and X3 of 1.5 g, 200 mg/L, and 2 h, respectively.


2013 ◽  
Vol 594-595 ◽  
pp. 240-244
Author(s):  
Nor Adilla Rashidi ◽  
Suzana Yusup ◽  
Azry Borhan

The objective of this research is to synthesize the microporous activated carbon and test its applicability for CO2gas capture. In this study, coconut shell-based and commercial activated carbon is used as the solid adsorbent. Based on the findings, it shows that the gas adsorption capacity is correlated to the total surface area of the materials. In addition, reduction in the adsorption capacity with respect to temperature proves that the physisorption process is dominant. Higher carbon dioxide (CO2) adsorption capacity in comparison to nitrogen (N2) capacity contributes to higher CO2/N2selectivity, and confirms its applicability in the post-combustion process. Utilization of abundance agricultural wastes and one-step physical activation process is attractive as it promotes a cleaner pathway for activated carbon production, and simultaneously, reduces the total operating cost.


Author(s):  
E. A. Iyiola ◽  
J. M. Owoyemi ◽  
T. P. Saliu ◽  
B. Olufemi ◽  
D. O. Dania ◽  
...  

Aims: This study investigates the use of sawdust from 3 hardwood species as low-cost adsorbent for the removal of copper from contaminated water. Study Design: The experimental design used for this study was 3 x 2 x 4 factorial experiment; the different sawdust species, two baselines (treated and untreated) and four levels of pH and time as factors were combined and used for the study. Methodology: Test was carried out to investigate the effect of sawdust pre-treatment on their adsorption capacity in the removal of Copper ions from contaminated water at different pH levels; the sawdust samples were sieved through a screen size of 850 μm after which a portion of each species sawdust was subjected to pre-treatment by boiling while the other portions were maintained as control samples (untreated). Results: The results shows that adsorption capacity for both treated and untreated samples were 69.75±13.78%,  68.60±19.48%, 69.34±23.08%, 74.79±17.79%, 74.52±22.30% and 76.90±18.21% for  Alstonia boonei, Erythrophleum suaveolens  and Ficus mucuso  respectively. Conclusion: The contact time and pH showed no significant difference between the treated and untreated samples. Sawdusts from the selected wood species are suitable to be used as adsorbent towards the removal of copper from contaminated water.


Sign in / Sign up

Export Citation Format

Share Document