scholarly journals The influence of drought on the change in the area of the assimilation surface of the genotypes of durum and bread wheat, which differ from the ripening period

2021 ◽  
pp. 37-41
Author(s):  
Tamraz H. Tamrazov

The article discusses the dynamics of changes in the area of the assimilation surface of assimilation organs of different genotypes of durum and soft wheat as a result of drought, differing in the ripening period. As you know, under drought conditions, the water potential of the soil first decreases, and then the plants; at later stages, the turgor pressure decreases, stomata close and there is a sharp decrease in photosynthetic activity. This situation creates stress in organisms and various biochemical, physiological and molecular reactions arise to overcome and protect this stress, allowing plants to develop resistance mechanisms that allow them to adapt to the external environment. The study showed a wide range of changes in the surface area of assimilation to assimilate organs in ontogenesis, depending on the morphophysiological characteristics of genotypes and donor-acceptor relations. Expansion of these studies showed that chloroplasts of high-yielding genotypes are characterized by high rates of electron transport and phosphorylation. It has also been confirmed that there is a relationship between CO2 assimilation and productivity.

Author(s):  
I.I. Seregina ◽  
◽  
I.G. Makarskaya

Abstract:In model experiments in soil culture, the effect of different methods of treatment with sodium selenite on the photosynthetic activity of spring wheat variety Zlata was studied under extreme growing conditions. Under drought conditions, the inhibition of the growth of the photosynthetic surface of spring wheat plants was revealed. Under conditions of excessive water supply, a sharp decrease in the area of the assimilating surface of wheat plants was observed. The positive effect of sodium selenite solution on the photosynthetic activity of spring wheat plants was established with insufficient and excessive water supply to wheat plants.


2019 ◽  
Vol 9 (18) ◽  
pp. 3728 ◽  
Author(s):  
Sarfraz ◽  
Nasim ◽  
Jacob ◽  
Gruhlke

During recent decades, selenium-containing compounds, as with the chemically similar sulfur-containing compounds, have gained considerable interest as cytotoxic and anticancer agents. Selenocyanates represent a well-established class of organic selenium compounds. These agents exhibit a wide range of biological activities. Classically, selenocyanates may cause an increase in the intracellular levels of reactive oxygen species (ROS) and exert cytotoxic activities, thus, acting as pro-oxidants. In this study, chemogenetic profiling was carried out to decipher the resistance mechanisms as central part of the antifungal mode of action against two selected selenocyanates. If a mutant line is less resistant against a compound compared to the wildtype, the gene deleted in that strain seems to be correlated with the resistance. Yeast mutants carrying gene deletions for specific redox-related protein function were employed in the chemogenetic screening. The results of screening reveal the hypersensitivity of mutants carrying deletions for glutathione pool and metabolism. To confirm the results, Arabidopsis mutants deficient in glutathione were subjected to various concentrations of selenocyanates to observe their effects on mutants and the wildtype. A significant dose dependent inhibition in Arabidopsis mutants compared to the wildtype confirmed the findings of the chemogenetic screening. The data suggest that the two representatives of organoselenium compounds cause oxidative stress in yeast cells and glutathione participates towards the development of resistance against the chemicals.


2019 ◽  
Vol 125 (5) ◽  
pp. 721-736 ◽  
Author(s):  
Corentin Dourmap ◽  
Solène Roque ◽  
Amélie Morin ◽  
Damien Caubrière ◽  
Margaux Kerdiles ◽  
...  

Abstract Background Mitochondria play a diversity of physiological and metabolic roles under conditions of abiotic or biotic stress. They may be directly subjected to physico-chemical constraints, and they are also involved in integrative responses to environmental stresses through their central position in cell nutrition, respiration, energy balance and biosyntheses. In plant cells, mitochondria present various biochemical peculiarities, such as cyanide-insensitive alternative respiration, and, besides integration with ubiquitous eukaryotic compartments, their functioning must be coupled with plastid functioning. Moreover, given the sessile lifestyle of plants, their relative lack of protective barriers and present threats of climate change, the plant cell is an attractive model to understand the mechanisms of stress/organelle/cell integration in the context of environmental stress responses. Scope The involvement of mitochondria in this integration entails a complex network of signalling, which has not been fully elucidated, because of the great diversity of mitochondrial constituents (metabolites, reactive molecular species and structural and regulatory biomolecules) that are linked to stress signalling pathways. The present review analyses the complexity of stress signalling connexions that are related to the mitochondrial electron transport chain and oxidative phosphorylation system, and how they can be involved in stress perception and transduction, signal amplification or cell stress response modulation. Conclusions Plant mitochondria are endowed with a diversity of multi-directional hubs of stress signalling that lead to regulatory loops and regulatory rheostats, whose functioning can amplify and diversify some signals or, conversely, dampen and reduce other signals. Involvement in a wide range of abiotic and biotic responses also implies that mitochondrial stress signalling could result in synergistic or conflicting outcomes during acclimation to multiple and complex stresses, such as those arising from climate change.


2019 ◽  
Vol 100 (6) ◽  
Author(s):  
L. S. Brizhik ◽  
J. Luo ◽  
B. M. A. G. Piette ◽  
W. J. Zakrzewski

2020 ◽  
Vol 10 (6) ◽  
pp. 2043-2056
Author(s):  
Apoorva Ravishankar ◽  
Amaury Pupo ◽  
Jennifer E. G. Gallagher

The use of glyphosate-based herbicides is widespread and despite their extensive use, their effects are yet to be deciphered completely. The additives in commercial formulations of glyphosate, though labeled inert when used individually, have adverse effects when used in combination with other additives along with the active ingredient. As a species, Saccharomyces cerevisiae has a wide range of resistance to glyphosate-based herbicides. To investigate the underlying genetic differences between sensitive and resistant strains, global changes in gene expression were measured, when yeast were exposed to a glyphosate-based herbicide (GBH). Expression of genes involved in numerous pathways crucial to the cell’s functioning, such as DNA replication, MAPK signaling, meiosis, and cell wall synthesis changed. Because so many diverse pathways were affected, these strains were then subjected to in-lab-evolutions (ILE) to select mutations that confer increased resistance. Common fragile sites were found to play a role in adaptation to resistance to long-term exposure of GBHs. Copy number increased in approximately 100 genes associated with cell wall proteins, mitochondria, and sterol transport. Taking ILE and transcriptomic data into account it is evident that GBHs affect multiple biological processes in the cell. One such component is the cell wall structure which acts as a protective barrier in alleviating the stress caused by exposure to inert additives in GBHs. Sed1, a GPI-cell wall protein, plays an important role in tolerance of a GBH. Hence, a detailed study of the changes occurring at the genome and transcriptome levels is essential to better understand the effects of an environmental stressor such as a GBH, on the cell as a whole.


2005 ◽  
Vol 143 (2-3) ◽  
pp. 183-192 ◽  
Author(s):  
F. COSTE ◽  
M. P. RAVENEAU ◽  
Y. CROZAT

A non-destructive indicator of seed water content could significantly help crop scientists with assessment of the effects of environmental conditions during drying on grain qualities or on seed physiological quality. This is particularly important for grain legumes which simultaneously bear pods of different ages. Visual assessment of pod colour has so far been used to date grain legume stages, but now colour can be easily and accurately measured with a portable spectrophotometer. Relationships between the spectrophotometer measurements and the pod and seed water contents were tested in various climatic contexts (3 years: 2000, 2001, 2002; field or greenhouse, two or three sowing dates) for two bean cultivars (Booster and Calypso) and also for one pea cultivar (Baccara) in 2003 near Angers, France. Among the different spectrophotometer measurements, hue angle (h) clearly shows the transition from green (h=180 °) to yellow (h=90 °) and then to red (h=0 °). In each context, h and seed water content (SWC) relationships showed the same pattern of three linear phases: first a steady state; then a sharp decrease from green (h=106–108 °) to yellow (h=85–93 °) just before the end of the seed filling stage for Booster or between the end of the seed filling phase and the beginning of seed drying for Calypso and pea; finally, a slow decrease from yellow to ochre (h=75–78 °) during seed drying. For each bean cultivar, the parameters of the linear relationships showed no differences between maturation conditions. Therefore, 6 h classes matching six SWC classes could be defined over a wide range of SWC between 0·56 and 0·2 g/g for Booster. However for Calypso and pea, only 3 h classes could be defined because of the tight relationships between h and SWC during the end of seed drying, which can be explained by pod walls drying faster than seeds. Hence, spectrophotometer measurements, if calibrated for a given cultivar of a species, could now be used to select pods with seeds of the same water content and therefore to study environmental effects on quality criteria either in controlled conditions or in the field.


2020 ◽  
Vol 61 (4) ◽  
pp. 761-774 ◽  
Author(s):  
Changwei Zhang ◽  
Huiyu Wang ◽  
Yuanyuan Xu ◽  
Shuning Zhang ◽  
Jianjun Wang ◽  
...  

Abstract Autopolyploids often show growth advantages over their diploid progenitors because of their increased photosynthetic activity; however, the underlying molecular basis of such mechanism remains elusive. In this study, we aimed to characterize autotetraploid pak choi (Brassica rapa ssp. chinensis) at the physiological, cellular and molecular levels. Autotetraploid pak choi has thicker leaves than its diploid counterparts, with relatively larger intercellular spaces and cell size and greater grana thylakoid height. Photosynthetic data showed that the relative electron transport rate (rETR) was markedly higher in autotetraploid than in diploid pak choi. Transcriptomic data revealed that the expressions of genes involved in ‘photosynthesis’ biological process and ‘thylakoids’ cellular component were mainly regulated in autotetraploids. Overall, our findings suggested that the increased rETR in the thylakoids contributed to the increased photosynthetic capacity of autotetraploid leaves. Furthermore, we found that the enhanced rETR is associated with increased BrPetC expression, which is likely altered by histone modification. The ectopic expression of BrPetC in Arabidopsis thaliana led to increased rETR and biomass, which were decreased in BrPetC-silenced pak choi. Autotetraploid pak choi also shows altered hormone levels, which was likely responsible for the increased drought resistance and the impaired powdery mildew resistance of this lineage. Our findings further our understanding on how autotetraploidy provides growth advantages to plants.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 608 ◽  
Author(s):  
Marta Mariniello ◽  
Raffaella Petruzzelli ◽  
Luca G. Wanderlingh ◽  
Raffaele La Montagna ◽  
Annamaria Carissimo ◽  
...  

Tumor resistance to chemotherapy represents an important challenge in modern oncology. Although platinum (Pt)-based drugs have demonstrated excellent therapeutic potential, their effectiveness in a wide range of tumors is limited by the development of resistance mechanisms. One of these mechanisms includes increased cisplatin sequestration/efflux by the copper-transporting ATPase, ATP7B. However, targeting ATP7B to reduce Pt tolerance in tumors could represent a serious risk because suppression of ATP7B might compromise copper homeostasis, as happens in Wilson disease. To circumvent ATP7B-mediated Pt tolerance we employed a high-throughput screen (HTS) of an FDA/EMA-approved drug library to detect safe therapeutic molecules that promote cisplatin toxicity in the IGROV-CP20 ovarian carcinoma cells, whose resistance significantly relies on ATP7B. Using a synthetic lethality approach, we identified and validated three hits (Tranilast, Telmisartan, and Amphotericin B) that reduced cisplatin resistance. All three drugs induced Pt-mediated DNA damage and inhibited either expression or trafficking of ATP7B in a tumor-specific manner. Global transcriptome analyses showed that Tranilast and Amphotericin B affect expression of genes operating in several pathways that confer tolerance to cisplatin. In the case of Tranilast, these comprised key Pt-transporting proteins, including ATOX1, whose suppression affected ability of ATP7B to traffic in response to cisplatin. In summary, our findings reveal Tranilast, Telmisartan, and Amphotericin B as effective drugs that selectively promote cisplatin toxicity in Pt-resistant ovarian cancer cells and underscore the efficiency of HTS strategy for identification of biosafe compounds, which might be rapidly repurposed to overcome resistance of tumors to Pt-based chemotherapy.


2020 ◽  
Vol 8 (12) ◽  
pp. 2027
Author(s):  
Alessandro Presentato ◽  
Elena Piacenza ◽  
Raymond J. Turner ◽  
Davide Zannoni ◽  
Martina Cappelletti

Metal(loid)s have a dual biological role as micronutrients and stress agents. A few geochemical and natural processes can cause their release in the environment, although most metal-contaminated sites derive from anthropogenic activities. Actinobacteria include high GC bacteria that inhabit a wide range of terrestrial and aquatic ecological niches, where they play essential roles in recycling or transforming organic and inorganic substances. The metal(loid) tolerance and/or resistance of several members of this phylum rely on mechanisms such as biosorption and extracellular sequestration by siderophores and extracellular polymeric substances (EPS), bioaccumulation, biotransformation, and metal efflux processes, which overall contribute to maintaining metal homeostasis. Considering the bioprocessing potential of metal(loid)s by Actinobacteria, the development of bioremediation strategies to reclaim metal-contaminated environments has gained scientific and economic interests. Moreover, the ability of Actinobacteria to produce nanoscale materials with intriguing physical-chemical and biological properties emphasizes the technological value of these biotic approaches. Given these premises, this review summarizes the strategies used by Actinobacteria to cope with metal(loid) toxicity and their undoubted role in bioremediation and bionanotechnology fields.


Sign in / Sign up

Export Citation Format

Share Document