scholarly journals Synthesis of Antibacterial Coating Using Chitosan, Polyethylene Glycol and Silver Nanoparticles and Investigation of Their Antibacterial Properties

2021 ◽  
Vol 13 (1) ◽  
pp. 1-9
Author(s):  
Saba Qureyshi ◽  
Zaman Sajid

Chitosan/ Polyethylene glycol and silver nanoparticles based antibacterial coating has been synthesized and applied to cotton cloth using sonochemical technique. In addition to the synthesis of nanoparticles using Pyrus seed extract (Green synthesis), Chitosan and PEG compound has also been used to develop the coating in this research. The coating obtained with this compound possesses good antibacterial properties and results. The study shows that the coated fabrics and silver nanoparticles show highly potent antibacterial activity towards gram negative and gram-positive bacteria. A comparison of coating with single and multiple components is studied; specifically, a comparison of pure chitosan and polyethylene glycol coating with their blend is studied. Agar plate test is performed against pseudomonas aeruginosa, Acinetobacter baumannii and methicillin-resistant staphylococcus aureus (MRSA), and the proposed process is helpful in healthcare industry and specified applications.

Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 652 ◽  
Author(s):  
Wang Lee ◽  
Eungwang Kim ◽  
Hyun-Ju Cho ◽  
Taejoon Kang ◽  
Bongsoo Kim ◽  
...  

A silver nanoparticle is one of the representative engineered nanomaterials with excellent optical, electrical, antibacterial properties. Silver nanoparticles are being increasingly used for medical products, water filters, and cosmetics, etc. However, silver nanoparticles are known to cause adverse effects on the ecosystem and human health. To utilize silver nanoparticles with minimized negative effects, it is important to understand the behavior of silver nanoparticles released to the environment. In this study, we compared toxicity behaviors of citrate-stabilized silver nanoparticles with polyethylene glycol coated silver nanoparticles in two different ionic environments, which are aquatic environments for developing zebrafish embryo. Depending on the composition of the ionic environment, citrate-stabilized silver nanoparticles and polyethylene glycol coated silver nanoparticles exhibited different behaviors in dissolution, aggregation, or precipitation, which governed the toxicity of silver nanoparticles on zebrafish embryos.


2016 ◽  
Vol 18 (4) ◽  
pp. 110-116 ◽  
Author(s):  
Anna Pachla ◽  
Zofia Lendzion-Bieluń ◽  
Dariusz Moszyński ◽  
Agata Markowska-Szczupak ◽  
Urszula Narkiewicz ◽  
...  

Abstract Superparamagnetic iron oxide nanoparticles were obtained in the polyethylene glycol environment. An effect of precipitation and drying temperatures on the size of the prepared nanoparticles was observed. Superparamagnetic iron oxide Fe3O4, around of 15 nm, was obtained at a precipitation temperature of 80°C and a drying temperature of 60°C. The presence of functional groups characteristic for a polyethylene glycol surfactant on the surface of nanoparticles was confirmed by FTIR and XPS measurements. Silver nanoparticles were introduced by the impregnation. Fe3O4-Ag nanostructure with bactericidal properties against Escherichia coli species was produced. Interesting magnetic properties of these materials may be helpful to separate the bactericidal agent from the solution.


2020 ◽  
Vol 2 (1) ◽  
pp. 46

Studies on the biodiversity of phylloplane and endophytic fungi on the leaf surfaces of the medicinal plant; Piper betle L. was made in our Microbiology laboratory, K.M. Govt. Institute for Postgraduate Studies and Research (Autonomous), Puducherry. The Agar plate method was used to isolate both the leaf surface and sub-surface fungi. During the study period, altogether twelve fungal species of seven genera of phylloplane and five species of endophytes were isolated from Piper betle L. by agar plate method. Penicillium sp., a dominant fungus, was chosen for the synthesis of silver nanoparticles. Silver nanoparticles (AgNPs) were synthesized from Ag+ ions by treating with different extracts of the fungus with AgNO3.The appearance of yellowish-brown color in the conical flasks suggested the formation of AgNPs in dark and light conditions. The AgNPs were characterized by UV-Vis spectroscopy, which has proved to be very useful for the analysis of nanoparticles. Candida albicans was found most susceptible towards the AgNPs of the fungus in comparison to other bacterial strains. Among the bacterial strains, Staphylococcus aureus was more suffered than V. parahaemolyticus and E. coli. It was found in the present study that our process for the synthesis of nanoparticles was easy, safe, and economical to be readily used in the field of biomedicine.


2010 ◽  
Vol 10 ◽  
pp. 29-37 ◽  
Author(s):  
Maryam Jokar ◽  
Russly Abdul Rahman ◽  
Nor Azowa Ibrahim ◽  
Luqman Chuah Abdullah ◽  
Tan Chin Ping

Silver nanoparticles are of interest due to their unique physicochemical and antimicrobial properties. The nanoparticles were produced by chemical reduction using short chain polyethylene glycol (PEG) as reducing agent, solvent and stabilizer in absence of other chemicals. Silver nanoparticles were separated from colloidal dispersion by ultra centrifuge at 14000 rpm. The reduction of silver ion (Ag+) to silver nanoparticles (Agº) was monitored by pH measurement and UV-visible spectroscopy of colloidal dispersion at fixed intervals. Silver nanoparticles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and diphenyl-picrylhydrazyl (DPPH) radical scavenging method. Antimicrobial activity of silver nanoparticles was investigated against Escherichia coli, Staphylococcus aureus and Vibrio parahaemolyticus by agar plate test. Results indicated 51.5% conversion efficiency of silver ions to silver nanoparticles. Colloidal dispersion containing 4.12 mg/ml silver nanoparticles showed uniform size of 5.5 ± 1.1 nm with a typical visible spectra band at 447 nm. Silver nanoparticles showed significant (p < 0.05) antimicrobial efficiency and with concentration of 100 ppm resulted in 46.22%, 66.51% and 69.06% inhibition against S. aureus, E. coli and V. parahaemolyticus, respectively. The nanoparticles were also found to reduce DPPH free radical up to 88.9%. Results of this study proved that the silver nanoparticles produced by polyethylene glycol possess antimicrobial and antioxidant activity.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Ana Paula Rodrigues Magalhães ◽  
Laura Barbosa Santos ◽  
Lawrence Gonzaga Lopes ◽  
Cyntia Rodrigues de Araújo Estrela ◽  
Carlos Estrela ◽  
...  

Streptococcus mutans is the microorganism mostly responsible for initiation of tooth decay and also for the progression of an established lesion. Silver has been used for its antibacterial properties for many years, in different forms: ionised and elementary forms, as silver zeolites or as nanoparticles. The purpose of this study was to evaluate the antibacterial activity of three dental cements modified by nanosilver. Three cements were used: Sealapex, RelyX ARC, and Vitrebond. The cements were incorporated with 0.05 mL of silver nanoparticles solution. Control groups were prepared without silver. Six Petri plates with BHI were inoculated with S. mutans using sterile swabs. Three cavities were made in each agar plate (total = 18) and filled with the manipulated cements. They were incubated at 37°C for 48 h, and the inhibition halos were measured. The paired t-Test was used for statistical analysis (P<0.05). No inhibition halos were obtained for Sealapex and Rely X, but Vitrebond showed bactericidal activity without silver and enhanced effect with silver incorporation.


2019 ◽  
Vol 9 (1-s) ◽  
pp. 196-200
Author(s):  
G Amalorpavamary ◽  
G Dineshkumar ◽  
K Jayaseelan

In recent times, plant-mediated synthesis of nanoparticles has garnered wide interest owing to its inherent features such as rapidity, simplicity, eco-friendliness and cheaper costs. For the first time, silver nanoparticles were successfully synthesized using Phyllanthus niruri leaf extract in the current investigation. The silver nanoparticles were characterized by UV–Vis spectrophotometer and the characteristic surface plasmon resonance peak was identified to be 423 nm. The morphology of the silver nanoparticles was characterized by scanning electron microscopy (SEM). The size of the silver nanoparticles was found to be 10-50 nm, with an average size 15 nm.  FTIR analysis was done to identify the functional groups responsible for the synthesis of the AgNPs. The antibacterial potential of synthesized AgNPs was compared with that of aqueous extracts of P.niruri by well diffusion method. The AgNPs at 50µl concentration significantly inhibited bacterial growth against A.hydrophila (16 ± 0.09 mm). Thus AgNPs showed broad spectrum antibacterial activity at lower concentration and may be a good alternative therapeutic approach in future. Keywords: Phyllanthus niruri, AgNps, Aeromonas hydrophila, Antibacterial Activity.


2021 ◽  
Vol 16 (12) ◽  
pp. 100-108
Author(s):  
Akanksha Dubey ◽  
Jayanthi Sivaraman

Designing a powerful approach for the synthesis of metal nanoparticles is a critical footstep in the field of nanotechnology. Algae-mediated synthesis of nanoparticles is a substitute to overthrow the restrictions of traditional methods. Penicillin-binding proteins are proteins binding to β-lactams and are convoluted in cell wall biosynthesis. The present study aimed to investigate the potential role of phytochemicals in inhibiting these penicillin binding proteins against bacterial agents using computational and experimental studies. Biosynthesis of silver nanoparticles was done using aqueous extract of Dictyota bartayresiana and was evaluated for antibacterial activity. Characterization was done via UV-visible spectroscopy, Scanning electron microscopy, Transmission electron microscopy and Xray diffraction studies. It was found that synthesized nanoparticle was spherical in shape and possessed antibacterial property against Staphylococcus aureus and Escherichia coli. Phytochemical screening was performed to identify the chemical constituents present in silver nanoparticles followed by molecular docking studies against penicillin binding proteins found in bacterial strains. In silico designing of silver nanoparticles was done using material science suite followed by probe target interactions. The results displayed a highly stable binding amongst designed nanoparticle and phytochemicals and indicated that the silver nanoparticles possessed antibacterial properties due to phytochemicals present in the extract.


2014 ◽  
Vol 23 ◽  
pp. 27-35
Author(s):  
Jyothi Hiremath ◽  
Vandana Rathod ◽  
Shivaraj Ninganagouda ◽  
Dattu Singh ◽  
K. Prema

Nanotechnology is a field that is burgeoning day by day, making an impact in all spheres of human life. Biological methods of synthesis have paved way for the “greener synthesis” of nanoparticles and these have proven to be better methods due to slower kinetics, they offer better manipulation and control over crystal growth and their stabilization. In this context we have investigated extracellular biosynthesis of silver nanoparticles (AgNPs) using cell-free extract of Rhizopus spp.. Formation of AgNPs was indicated by the change in the colour of the cellfree extract from yellow to dark brown under static condition after 48 hrs of incubation. Characterization of AgNPs was carried out by UV-Vis Spectroscopy which gave sharp plasmon resonance peak at 429 nm corresponding to spherical shaped nanoparticles. Transmission electron microscopy (TEM) micrograph showed formation of well-dispersed AgNPs in the range of 25-50 nm. Scanning electron microscopy (SEM) showed the particles to be uniformly dispersed without agglomeration with smooth morphology. EDS showed the presence of elemental silver at 3kev. X-ray diffraction (XRD)-spectrum of the AgNPs exhibited 2θ¸ values corresponding to nanocrystal. These biosynthesized AgNPs were used to study their antimicrobial activity against Multi-drug resistant (MDR) E. coli strains, by Agar diffusion method. Zone of inhibition was measured. Synthesis of nanosized particles with antibacterial properties, which are called "nanoantibiotics", is of great interest in the development of new pharmaceutical products.


2021 ◽  
Vol 12 (3) ◽  
pp. 3811-3835

Nowadays, many types of research are looking for natural products to be used in several applications, particularly in the medical field. Psidium guajava Leave Extract was therefore used to impart multi-functional properties to cotton fabrics, such as antibacterial and antioxidant properties, in addition to ultraviolet protection. Two solvents have been used for the preparation of the extract, namely water, and ethanol. Both prepared extracts were used as a reducing and stabilizing agent in the synthesis of silver nanoparticles. Prepared extracts and synthesized nanoparticles have been characterized using a variety of techniques, such as total phenol content, antioxidant activity, particle size, FTIR, and TEM, and these techniques provide the extraction and synthesis of silver nanoparticles. The optimization of the treatment condition of cotton fabrics was evaluated at different concentrations, pH, time, and temperature. The assessment shows that the optimum condition for the treated cotton fabric has been achieved by using 100% of the extract at pH 8 for 15 min at 70°C. Monitoring was assessed as a UPF value. Antimicrobial results for treated tissues showed that Gram-negative bacteria showed less sensitivity to both extracts than Gram-positive bacteria, while fungal strains showed high sensitivity to both extracts. The antioxidant properties of the treated fabrics may also improve, allowing them to be considered in medical applications.


2021 ◽  
pp. 1330-1341
Author(s):  
Mbarga M. J. Arsène ◽  
I. V. Podoprigora ◽  
Anyutoulou K. L. Davares ◽  
Marouf Razan ◽  
M. S. Das ◽  
...  

Background and Aim: The gradual loss of efficacy of conventional antibiotics is a global issue. Plant material extracts and green-synthesized nanoparticles are among the most promising options to address this problem. Therefore, the aim of this study was to assess the antibacterial properties of aqueous and hydroalcoholic extracts of grapefruit peels as well as their inclusion in green-synthesized silver nanoparticles (AgNPs). Materials and Methods: Aqueous and hydroalcoholic extracts (80% v/v) were prepared, and the volume and mass yields were determined. The synthesis of AgNPs was done in an eco-friendly manner using AgNO3 as a precursor. The nanoparticles were characterized by ultraviolet–vis spectrometry and photon cross-correlation spectroscopy. The antibacterial activity of the extracts was tested on three Gram-positive bacteria (Staphylococcus aureus ATCC 6538, clinical Enterococcus faecalis, and S. aureus) and two Gram-negative bacteria (two clinical Escherichia coli) using various concentrations of extracts (100, 50, 25, 12, and 5 mg/mL and 5% dimethyl sulfoxide as negative control). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the microdilution method. Modulation of cefazoline and ampicillin on resistant E. coli and S. aureus strains was added to the mixture design response surface methodology with extreme vertices design, with the diameters of inhibition and the fractional inhibitory concentration index as responses and factors, respectively. The antibiotic, the ethanolic extract, and water varied from 0.1 MIC to 0.9 MIC for the first two and from 0 to 0.8 in proportion for the third. Validating the models was done by calculating the absolute average deviation, bias factor, and accuracy factor. Results: The volume yield of the EE and aqueous extract (AE) was 96.2% and 93.8% (v/v), respectively, whereas their mass yields were 7.84% and 9.41% (m/m), respectively. The synthesized AgNPs were very uniform and homogeneous, and their size was dependent on the concentration of AgNO3. The antibacterial activity of the two extracts was dose-dependent, and the largest inhibition diameter was observed for the Gram-positive bacteria (S. aureus ATCC 6538; AE, 12; EE, 16), whereas AgNPs had a greater effect on Gram-negative bacteria. The MICs (mg/mL) of the AEs varied from 3.125 (S. aureus ATCC 6538) to 12.5 (E. coli 1 and E. coli 2), whereas the MICs of the EEs varied from 1.5625 (S. aureus 1, S. aureus ATCC 6538, and E. faecalis) to 6.25 (E. coli 1). There was a significant difference between the MICs of AEs and EEs (p=0.014). The MBCs (mg/mL) of the AEs varied from 12.5 (S. aureus ATCC 6538) to 50 (S. aureus 1), whereas those of the EEs varied from 6.25 (S. aureus 1) to 25 (E. coli 1 and E. faecalis). Ethanolic grapefruit extracts demonstrated an ability to modulate cefazolin on E. coli and S. aureus but were completely indifferent to ampicillin on E. coli. Conclusion: Grapefruit peel extracts and their AgNPs exhibit antibacterial properties that can be exploited for the synthesis of new antimicrobials and their EEs may be efficiently used synergistically with other antibiotics against bacteria with intermediate susceptibility.


Sign in / Sign up

Export Citation Format

Share Document