scholarly journals PEMBUATAN KARBOKSIMETIL SELULOSA DARI KULIT PISANG KEPOK DENGAN VARIASI KONSENTRASI NATRIUM HIDROKSIDA, NATRIUM MONOKLOROASETAT, TEMPERATUR DAN WAKTU REAKSI

2017 ◽  
Vol 6 (3) ◽  
pp. 47-51
Author(s):  
Saputri Ayuningtiyas ◽  
Feni Dwi Desiyana ◽  
Siswarni MZ

Carboxymethyl cellulose (CMC) is a derivative cellulose which is soluble an in water (hydrophilic colloid). This material effective to bind water to provide a uniform texture and increase viscosity. The aim  of this study is to utilize banana peel as a raw material to synthesis CMC and determine the best conditions in the process of synthesis CMC from banana peel. The materials used were banana peel, water, aquades, NaOH, Natirum monochloroacetat and glacial acetic acid. The variables in this study were NaOH concentration, natirum monochloroacetat mass, temperature and reaction time. In this  research consists of four stages there are preparation of raw materials, alkalization, carboxymethylation, and neutralization. The results of this research  shows the variatioon NaOH concentration 20%  and  temperature of 45oC degree, mol rasio of  cellulose:sodium monochloroacetat 1:1,6 with a reaction time of 120 minutes obtained the highest substitution degree of 0,73-0.812. The FTIR analysis shows the presence of the O-H, C-H, C = O, C-0, CH2 and 1,4 β-glycoside function groups known to have the same function groups as the commercial carboxymethyl cellulose.

2020 ◽  
Vol 849 ◽  
pp. 125-129
Author(s):  
Zahrul Mufrodi ◽  
Shinta Amelia

Esterification and transesterification processes for biodiesel production generate glycerol which is possible to be converted into triacetin. It is an actractive bioadditive for increasing octane number of fuel. The production of this bioadditive in a biodiesel plant also increases the revenue as raw material comes from biodiesel process production as by-product.This study examines the effects of catalyst concentration and temperature on triacetin production using glycerol from esterification process and acetic acid at volume ratio of 1:3 as raw materials. An activated charcoal as catalyst is activated with sulfuric acid at concentration of 2% and 3% (w/w). The esterification temperatures are varied at 90 and 100°C and the reaction time is set for 3 hours. The samples are taken frequently at certain interval times of 15, 30, and 60 minutes for chemical analysis using Gas Chromatography Mass Spectometry. It is observed that using 2% and 3% (w/w) of catalysts at 90°C and 60 minutes reaction time converts 41.037% and 57.441% of glycerol respectively.


2020 ◽  
pp. 88-92
Author(s):  
V. V. Kondratenko ◽  
N. E. Posokina

Relevance and methodology. Today, white cabbage is the most popular type of vegetable raw materials used for fermentation not only in Russia, but also in other countries. To obtain a variety of flavors and shades of flavor, various vegetables (carrots, sweet peppers), fruit (apples, cranberries) and spicy-aromatic additives (cumin, dill seed, etc.) are added to the cabbage during fermentation. During fermentation, the product contains not only the initial components of the raw material (vitamin C, macro-and micronutrients), but also significantly increases the number of lactic acid microorganisms – the main "participants" in the process.One of the main products of the metabolism of lactic acid microorganisms is lactic acid. At a concentration of 0.5%, it begins to inhibit the development of many microorganisms. When reaching a concentration of 1-2% microbiological enzymatic hydrolysis, as a rule, ceases. The accumulation of acetic acid allows us to judge the intensity of the heterofermentative stage of fermentation using strains of lactic acid microorganisms.Results. The L. plantarum + L. casei consortium has shown a synergistic interaction in the accumulation of lactic acid, since the amount of acid produced by the consortium significantly exceeds the amount of acid produced by each strain separately. This point is also noted for the accumulation of acetic acid. In the L. brevis + L. casei consortium, the opposite situation is observed: when using cultures separately, the accumulation of lactic acid occurs to a greater extent than when using two cultures simultaneously. There are no obvious differences between monocultures and the consortium in terms of acetic acid accumulation. In the case of the L. plantarum + L. brevis consortium, we observe a synergistic interaction, with the dominant role in this consortium played by L. plantarum, and the contribution of L. brevis to the accumulation of lactic acid is insignificant. At the same time, the total resulting accumulation of acetic acid is significantly less than the result of each strain separately, which may indicate a negative mutual effect of the participants in the process. Acid degradation of the polysaccharide matrix of cell walls does not occur during the entire fermentation process.


2020 ◽  
Vol 8 (03) ◽  
pp. 253
Author(s):  
Ridwan Santoso

In this study consists of 5 stages, namely preparation of raw materials, cellulose isolation, alkalization, carboxymethylization, and purification. The raw material preparation stage is banana stem powder sieved at mesh 60. Furthermore, cellulose isolation of banana stems is carried out with 90% formic acid with a stirring speed of 300 rpm for 180 minutes at 100 0C. Alkalised using 15% NaOH and varying concentrations of 70%, 80%, 90% and 100% isopropanol solvents in a 100 rpm waterbath shaker for 60 minutes at 300C. The next step is carboxymethylation between alkali cellulose and trichloroacetic acid for 180 minutes at 550C in a 100 rpm waterbath shaker. At the purification glacial acetic acid and ethanol are used to remove unwanted by-products. The results characteristics with the highest degree of substitution value of 0.8 in the composition of 100% isopropanol, the highest purity of 99.7%, pH 4.8 and 5% moisture content.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2237 ◽  
Author(s):  
P. R. Sarika ◽  
Paul Nancarrow ◽  
Abdulrahman Khansaheb ◽  
Taleb Ibrahim

Phenol–formaldehyde (PF) resin continues to dominate the resin industry more than 100 years after its first synthesis. Its versatile properties such as thermal stability, chemical resistance, fire resistance, and dimensional stability make it a suitable material for a wide range of applications. PF resins have been used in the wood industry as adhesives, in paints and coatings, and in the aerospace, construction, and building industries as composites and foams. Currently, petroleum is the key source of raw materials used in manufacturing PF resin. However, increasing environmental pollution and fossil fuel depletion have driven industries to seek sustainable alternatives to petroleum based raw materials. Over the past decade, researchers have replaced phenol and formaldehyde with sustainable materials such as lignin, tannin, cardanol, hydroxymethylfurfural, and glyoxal to produce bio-based PF resin. Several synthesis modifications are currently under investigation towards improving the properties of bio-based phenolic resin. This review discusses recent developments in the synthesis of PF resins, particularly those created from sustainable raw material substitutes, and modifications applied to the synthetic route in order to improve the mechanical properties.


Cerâmica ◽  
2013 ◽  
Vol 59 (351) ◽  
pp. 473-480 ◽  
Author(s):  
K. C. P. Faria ◽  
J. N. F. Holanda

The sugarcane industry generates huge amounts of sugarcane bagasse ashes (SCBA). This work investigates the incorporation of a SCBA waste as an alternative raw material into a clay body, replacing natural clay material by up to 20 wt.%. Clay ceramic pieces were produced by uniaxial pressing and fired at temperatures varying from 700 to 1100 ºC. The technological properties of the clay ceramic pieces (linear shrinkage, apparent density, water absorption, and tensile strength) as function of the firing temperature and waste addition are investigated. The phase evolution during firing was followed by X-ray diffraction. The results showed that the SCBA waste could be incorporated into red ceramics (bricks and roofing tiles) in partial replacement for natural clay material. These results confirm the feasibility of valorisation of SCBA waste to produce red ceramic. This use of SCBA can also contribute greatly to reducing the environmental problems of the sugarcane industry, and also save the sources of natural raw materials used in the ceramic industry.


Author(s):  
Patrick Degryse ◽  
Dennis Braekmans

Petrography has developed into an indispensable tool for ceramic fabric analysis, specifically studying the mineralogical and textural composition of ceramic objects. Petrography is a technique commonly used in geology to describe and classify rocks. Ceramic petrography studies clay-based archaeological or historical materials. Using a polarizing light microscope (PLM) in ceramic studies, the different raw materials used to make a ceramic object can be identified, ranging from clays and other minerals to rock fragments and inorganic or organic temper. The technique moreover feeds into the study of raw material provenance and origin, and is able to discern the different technological procedures followed to make the ceramic object (from shaping to firing), next to providing clues on the function of the object. This information not only helps reconstruct trade and exchange of raw materials and ceramics, but aids in reconstructing society behind the pot.


2012 ◽  
Vol 622-623 ◽  
pp. 162-165
Author(s):  
Da Wei Yin ◽  
Gang Tao Liang ◽  
Xiao Ming Sun ◽  
Yu Ting Liu

Acetylferrocene was synthesized by acetyl chloride and ferrocene as raw materials, dichloromethane as the solvent, and ZnO as catalyst. Response surface methodology based on three-level, three-variable central composite rotable design was used to evaluate the interactive effects of the ratio of acetyl chloride and ferrocene(2-4), the amount of ZnO(1.0-1.3mol), reaction time(30-60 min)on the percentage yield of acylferrocene. The optimal raw material ratio, amount catalyst, and reaction time was 3:1, 1.19mol, 40min. Under the optimum conditions, the actual experimental yield can reach 86.72%.


2015 ◽  
Vol 659 ◽  
pp. 216-220 ◽  
Author(s):  
Achanai Buasri ◽  
Thaweethong Inkaew ◽  
Laorrut Kodephun ◽  
Wipada Yenying ◽  
Vorrada Loryuenyong

The use of waste materials for producing biodiesel via transesterification has been of recent interest. In this study, the pork bone was used as the raw materials for natural hydroxyapatite (NHAp) catalyst. The calcination of animal bone was conducted at 900 °C for 2 h. The raw material and the resulting heterogeneous catalyst were characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and the Brunauer-Emmett-Teller (BET) method. The effects of reaction time, microwave power, methanol/oil molar ratio, catalyst loading and reusability of catalyst were systematically investigated. The optimum conditions, which yielded a conversion of oil of nearly 94%, were reaction time 5 min and microwave power 800 W. The results indicated that the NHAp catalysts derived from pork bone showed good reusability and had high potential to be used as biodiesel production catalysts under microwave-assisted transesterification of Jatropha Curcas oil with methanol.


Author(s):  
Magdalena Śmiglak-Krajewska

The main purpose of this paper was to identify the factors affecting the selection of raw materials used by feed operators in feed production. An attempt was also made to indicate the barriers to increasing the use of native protein plants by feed operators in feed production. Today, many EU countries (including Poland) primarily rely on vegetable protein derived from genetically modified soya bean meal (mainly imported from South America and the U.S.) in addressing their needs for protein raw material used in animal feed. For many years now, Poland has taken steps to increase the production and use of native protein raw material to partially replace soya bean meal imports. The use of mixes of diverse domestic protein sources derived from grain legumes (peas, field beans, lupine) can provide an advantageous alternative to compound feeding stuff based on imported post-extraction soya bean meal. To meet the objective defined above, this paper relied on the results of a 2018 survey conducted with a sample of 29 feed operators located across the country. More than half (55%) of the enterprises surveyed did not use legumes in feed production; the use of legumes was above 10% in only 3% of respondents. When asked about the key factors affecting the selection of raw materials used in production processes, the respondents declared to be interested in buying large batches of homogeneous raw materials that meet specific quality parameters (33% replied “rather yes” and 67% replied “definitely yes”). The protein content of plant seeds used in feed production was identified as another aspect of extreme importance (55% replied “rather yes” and 24% replied “definitely yes”).


2012 ◽  
Vol 83 (4) ◽  
pp. 381-395 ◽  
Author(s):  
Longfang Ren ◽  
Guohui Zhao ◽  
Taotao Qiang ◽  
Xuechuan Wang ◽  
Na Wang

In the current study, amino-terminated hyperbranched polymers (NH2-HBP) were synthesized by Michael addition reaction in which N, N’-methylene bisacrylamide (MBA) and diethylene triamine (DETA) were used as raw materials, and water was used as a solvent. Reaction temperature, raw material ratio, and reaction time were optimized via single-factor experiments in which the production rate and primary amino content were used as indexes. The results showed that the mol ratio of MBA to DETA was 1:1.1, the temperature was 70°C, and reaction time was 24 h. Under this condition, the primary amino content of NH2-HBP was 2.83 mmol/g, and the yield was 91.16%. The NH2-HBP structure was characterized by Fourier transform infrared spectroscopy and nuclear magnetic resonance. Moreover, the relative molecular mass distribution of NH2-HBP was also determined by gel permeation chromatography. As an active substance, NH2-HBP was grafted onto the polyamide microfiber synthetic leather used in clothes, and organic phosphine was used as a cross-linking agent. The change in dye uptake, surface chroma, and resistance to dry-rub and wet-rub fastness properties was discussed. When the NH2-HBP dosage was 5.5%, the dye uptake improved from 56.89% to 94.85% (an increase of almost 61%). The surface chroma also deepened, the dry-rub fastness improved from 3.0 to 4.5, and the wet-rub fastness improved from 2.5 to 3.5.


Sign in / Sign up

Export Citation Format

Share Document