scholarly journals Pengolahan Sampah Organik Menjadi Biobriket Sebagai Energi Terbarukan

2020 ◽  
Vol 3 (2) ◽  
pp. 58
Author(s):  
G M Saragih ◽  
Marhadi Marhadi ◽  
Yulia Defriati

One of the uses of organic waste is processing it into biomass briquettes which can later be used as energy. Organic waste received is dry organic waste such as dry leaves, dry twigs, inorganic waste such as plastic waste which can be used as an adhesive in making waste biobriquettes. The purpose of processing organic and inorganic waste into energy is to benefit from the waste in the city of Jambi. The benefit obtained is to reduce waste which can be used as energy. The kerosene to LPG conversion program has resulted in a rapid increase in LPG consumption which domestic production cannot meet. This causes LPG imports to increase rapidly, so that if in 2007 the volume of LPG imports was still at 137 thousand tons, in 2011 it increased to 1,992 thousand tons or an increase of almost 15 times (Outlook Energi Indonesia 2013). The highest calorific value with the optimum composition is found in biobriquette sample 3 with a variation of the composition of 75% organic waste: 5% inorganic waste: 10% water: 10% glue, which is 19361 J / gr. The lowest ash content with the optimum composition was found in sample 3 with a variation of the composition of 75% organic waste: 5% inorganic waste: 10% water: 10% glue, namely 5.06%. The lowest water content with the optimum composition is found in sample 1 and sample 2 with a water content of 0.92%, this is already in accordance with SNI for biobriquettes. The lowest CO content with the optimum composition is found in the biobriquette sample 1 with a variation of the organic composition of 85%: 5% inorganic: 5% water: 5% glue, which is 60.33 μg/Nm3.

2017 ◽  
Vol 2 (1) ◽  
pp. 43 ◽  
Author(s):  
Lilih Sulistyaningkarti ◽  
Budi Utami

This study aimed to (1) make charcoal briquettes from corncobs organic waste; (2) determine the right type of adhesive to make a corncobs charcoal briquette to produce good quality briquettes; (3) determine the appropriate percentage of adhesive to produce corncobs briquettes to produce good quality briquettes; and (4) know the best characteristics of corncobs charcoal briquettes which include moisture content, volatile content, ash content, carbon content and caloric value. The sample used was corncob obtained from a corn farmer in Pasekan Village, Wonogiri regency. This research used experimental method in laboratory with several stages, namely: (1) preparation of materials; (2) carbonization; (3) crushing and sifting of charcoal (4) mixing charcoal with adhesive and water; (5) briquetting; (6) briquette drying; And (7) analysis of briquette quality. This adhesive types used in this research were tapioca flour and wheat flour and the percentage of adhesive material were 5%, 10% and 15% from total weight of charcoal powder. The result of the research were: (1) charcoal briquettes as alternative energy source can be made from biomass waste (corncobs organic waste); (2) charcoal briquettes from organic corncobs wastes using tapioca flour adhesives have better quality than using wheat flour adhesives; (3) the both charcoal briquettes using 5% of tapioca flour adhesive and 5% wheat flour adhesives have better quality than 10% and 15% in terms of moisture content, volatile content, ash content, carbon content and calorific value; and (4) the best characteristics obtained are for the charcoal briquettes using 5% of tapioca flour adhesive, which have water content of 3,665%; volatile matter amounting of 11.005%; ash content of 4.825%; fixed carbon content of 80.515%; and high heat value of 5661,071%.


2019 ◽  
Vol 4 (2) ◽  
pp. 243-256
Author(s):  
Yar Johan ◽  
Person Pesona Renta ◽  
Dewi Purnama ◽  
Ali Muqsit ◽  
Pinsi Hariman

Pantai panjang telah ditetapkan menjadi salah satu destinasi ekowisata yang ada di Kota Bengkulu. Terdapat 2 jenis marine debris (sampah organik dan sampah anorganik) yang meyebabkan permasalahan di Pantai Panjang. Hasil penelitian menunjukkan bahwa terdapat 13 macam marine debris yang digolongkan ke dalam sampah organik di Pantai Panjang yaitu kayu, kertas, kelapa, daun, akar, kardus, bambu, kulit durian, pinang, ketapang, serabut, pohon jagung dan mangrove. Sedangkan jenis sampah anorganik ditemukan 21 macam marine debris yaitu plastik, botol kaca, busa, kain, sepatu, pipet, sendal, tutup botol, tali, pecahan kaca, mainan plastik, karpet, pena, boneka, steorofom, karet, gabus, rem dan sikat gigi. Jenis sampah organik yang mendominasi adalah sampah kayu, sedangkan untuk sampah anorganik yang mendominasi adalah sampah plastik. Jumlah potongan sampah laut dan berat sampah laut tertinggi didominasi oleh sampah organik.TYPES AND WEIGHT OF MARINE DEBRIS IN PANJANG BEACH BENGKULU CITY. Panjang beach has been established as one of the ecotourism destinations in Bengkulu city. There were 2 types of marine debris (organic waste and inorganic waste) which cause problems at Pantai Panjang. The results showed that there were 13 types of waste classified as organic waste in Pantai Beach, namely wood, paper, coconut, leaves, roots, cardboard, bamboo, durian, areca nut, ketapang, fibers, corn and mangrove. While inorganic waste types were found 21 kinds of marine debris, namely plastic, glass bottles, foam, cloth, shoes, pipettes, sandals, bottle caps, ropes, broken glass, plastic toys, carpets, pens, dolls, steorofomes, rubber, cork, brakes and tooth brush. The dominant type of organic waste was wood waste, while for inorganic waste that dominates was plastic waste. The highest number of pieces of marine debris and the weight of marine debris was dominated by organic waste.


2021 ◽  
Vol 13 (2) ◽  
pp. 190
Author(s):  
I Wayan Koko Suryawan ◽  
Ariyanti Sarwono ◽  
Iva Yenis Septiariva ◽  
Chun-Hung Lee

Highlight Research:The potential calorific value of marine debris obtained from calculating the total waste is 12.05 MJ/kg, which still falls within the incinerator application's standard criteria. AbstractMarine debris, a global environmental issue today, is a major threat to Bali’s seas which are famous for its natural beauty and aggravated by the spread of COVID-19 pandemic. This study aimed to determine the characteristics of marine debris in Bali Island, especially in the southern region and to analyze the feasibility of incineration as one of the waste treatment processes. This research was conducted by utilizing secondary data and literature reviews from related previous studies. Water content and caloric value were measured directly using the ASTM E 790-15 and ASTM D 5865-11a standards. Marine debris generation from 2013 to 2019 tends to decrease from 1.22 kg/km.day to 0.46 kg/km.day. Organic waste (59.4%) comprised the largest marine debris followed by plastic waste (13.4%) and diapers (11.9%). Thermal technology such as incineration can be introduced to treat marine debris. The standard application of incinerator technology is moisture content and caloric value. The water content of marine debris is reportedly 54.56%, therefore, further preliminary processing is needed, especially for waste with high moisture content, such as diapers and organic waste. The potential calorific value of marine debris during the COVID-19 pandemic obtained from calculating the total waste was 12.05 MJ/kg which still did not meet the incinerator application's standard criteria.


2017 ◽  
Vol 1 (1) ◽  
pp. 113
Author(s):  
Lisa Mariati ◽  
Yusbarina Yusbarina

AbstractHuman needs on fossil fuels is increasing, but the source is limited.  Thus, a renewable alternative source is needed.  One of them is Biomass.  Biomass fuel can be in the form of bio-briquette. Bio-briquette utilization as fuel is based on the carbon content contained in Biomass such as peat and bagasse.  This research aimed at knowing bio-briquette quality as fuel and learning source at senior high school.  Bio-briquette prepared with variation of peat and bagasse mass composition were 40: 0, 30: 10, 20: 20, 10: 30, 0: 40 (g: g).  Bio-briquette was made by using 20 g adhesive kanji.  Bio-briquette quality tested was done by testing the water content, ash content, volatile matter, fixed carbon, calorific value, and duration of flame.  Bio-briquette the best quality is the mass variation of G 10g: 30g AT with water content of 3.93%, ash content of 6.33%, volatile matter of 46.60%, fixed carbon of 43.14%, calorific  value of 5986 cal / g , duration of flame 210 minutes and the mass variation 0g G: 40g AT with water content of 2.33%, ash content of 3.83%, volatile matter of 49.47%, calorific value of 6198 cal / g, duration of flame 250 minutes. Preparing bio-briquette of peat and bagasse as learning source on chemistry material and its implementation was on the category of good (93.33%). Keywords: Bio-briquette, Peat, Bagasse, Quality test


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
I Made Indradjaja M. Brunner ◽  
Arief Norhidayat ◽  
Satria M. Brunner

Solid Waste Processing Technology at the Source (TOSS) is an alternative method in processing organic and biomass waste on a communal scale. The processing of organic and biomass waste material is carried out in three stages of the process: biodrying which utilizes the aerobic activity of microorganisms; chopping which is intended to refine the material, and pelletization to compact the material into biomass pellets. The biodrying process in bamboo boxes is able to reduce the water content in organic and biomass waste within 4-5 days. Sorting of non-organic materials can be done at an early stage before or after the biodrying process. Sorting is required before chopping and pelletizing process to avoid unnecessary machine break down. The biomass pellet which is the final product has a diameter of about 10 mm with a length between 10-40 mm, a calorific value between 3000-4000 kcal/kg, and a moisture content of up to 15%. Compared to coal, biomass pellets tend to have higher volatile and ash content, while lower ash and sulfur content.


2021 ◽  
Vol 9 (3) ◽  
pp. 282
Author(s):  
Fonny Rianawati ◽  
Zainal Abidin ◽  
Muhammad Naparin

This study aims to conduct a study of the quality value of briquettes made from mixing straw and rice husks which include a flame test and combustion rate which is expected to be used to educate people around the forest by providing innovation and technology regarding the use of post-harvest waste. The results showed that the value of the quality of briquettes made from variations in the mixing of straw and rice husks including the flame test of the combustion rate obtained results, for treatment A (100% straw) of 0.68 gr/minute, treatment B (100% husk) of 0 ,57 gr/minute, treatment C (Husk 75% + Straw 25%) was 0.40 gr/minute, treatment D (Husk 25% + Straw 75%) was 0.46 r/minute and treatment E (Husk 50% + Straw 50%) of 0.43 gr/minute. The value of the flame to boiling time for treatment A = 38.62 minutes, treatment B = 31.05, treatment C = 23.22 minutes, treatment D = 36.05 and treatment E = 27.95 minutes. Density values of all treatments, and the water content for treatment B and treatment C can meet SII. While other parameters: ash content, volatile matter, bound carbon and calorific value still cannot meet the standards, so it is recommended to carry out further research with other variations of treatment, in order to obtain briquettes with quality that can meet the standards.


2011 ◽  
Vol 1 (2) ◽  
pp. 81-90
Author(s):  
Budiyanto Budiyanto ◽  
Pandu Imam Sudibyo Adib ◽  
Sari Puspita Ningsih

Biobriquet defined as fuel and solid which came from organic rested material. The formation of biomass into biobriquet intended to facilitate its utilizing. The use of biobriquet as alternative energy can replace the use of kerosene for burning needs in the household. This research is aimed to determine the best type of biobriquet based on the quality of burning performance produced by kerosene control and determine life time of biobriquet that have been packaged on plastic and paper bags that saved in temperature room. This research was conducted in the Laboratory of Agricultural Technology, Faculty of Agriculture,UniversityofBengkuluand PT Sucofindo Bengkulu. It examined four types of biobriquet which are palm shell charcoal biobriquet (A), Empty fruit bunch (EFB) charcoal + coal biobriquet (B), EFB charcoal biobriquet (C) and non-choarcoling oil palm shells biobriquet (D). Observed variables are the calorific value, moisture content, ash content, levels of substance to fly, lighting time, burning time, Water Boiling Test (WBT), Control Cooking Test (CCT), intensity of smoke, and water content changes in packaging of biobriquet. The results showed  that non-choarcoling palm oil shells biobriquet (D) is the best biobriquet based on performance quality. If it compared with kerosene, non-choarcoling palm oil shells biobriquet (D) is better than kerosene, while in other biobriquets, kerosene is still the best one. Based on other biobriquet tests (water content, calorific value, ash content, levels of substance to fly, lighting time, burning time and fuel consumption biobriquet), the best biobriquet that replaced kerosene is TKKS charcoal biobriquet (C), however, for the variables which compared with kerosene (burning time and fuel consumption), kerosene is still the best one. Biobriquet that packaged by using paper bags for 6 weeks the rising of water levels are relatively low compared with the plastic bags.


2015 ◽  
Vol 77 (23) ◽  
Author(s):  
Maryudi Maryudi ◽  
Martomo Setyawan ◽  
Noni Noni ◽  
Samihah Yahayor

The poor degradability of plastics has led to huge plastics deposit in a landfill of which pyrolysis technology has been proposed to solve plastics waste problem. This paper reports the study on characteristics of two kinds of plastic wastes: selected packaging plastics and PVC. Characterizations have been performed for investigating water content, ash content, and decomposition temperature. The results revealed that the water content of packaging plastic waste was 0.69 ± 0.11%, while PVC was 1.22 ± 0.24%. The ash contents are 2.36 ± 1.03 % and 27.24±1.73 % for packaging plastics waste and PVC waste respectively. Plastic waste from packaging application and PVC waste decomposed at a temperature of 300-500°C and 200-800°C respectively. Decomposition of PVC waste took place in three stages: 200-370°C, 370-525°C and 600-800°C. It is recommended that the pyrolysis process should be conducted in the range of 300-500°C for packaging plastic waste and 200-800°C for PVC waste.


2019 ◽  
Vol 5 (2) ◽  
pp. 91
Author(s):  
Rika Wayuni ◽  
Melyani Melyani ◽  
Mega Selvi auliana Sari ◽  
Reza Safitri

The management of used goods needs to be improved in order to reduce pollution and contamination. The largest source of waste comes from settlements, which 75% consists of organic waste and only 25% inorganic waste. Inorganic waste management is still very minimal. Inorganic waste is very difficult to degrade and cannot even be degraded at all naturally, therefore a very large area is needed to compensate for the production of this type of waste. One of the most common inorganic waste found in the community is a plastic straw. Plastic straws are a drinking aid that is only used occasionally and in turn, increases the amount of waste available. Plastic straw waste in Singkawang City is one of the elements causing pollution that is not easily broken down because it is made of inorganic plastic. Plastic straw waste in Indonesia reaches more than 93.2 million per day, because of its large potential, it would be better if this plastic waste is used as a product and creativity in order to organize plastic waste properly, so that plastic really supports people's economic life community.


2019 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Mutiara Fadila Rania ◽  
I Gede Eka Lesmana ◽  
Eka Maulana

The garbage dumping in Tegal Regency has reached 989.8 m3/day and increasing every year. The percentage of waste in Murareja landfill is dominated by plastic waste which is 40.15%. The plastic waste will be processed by pyrolysis by utilizing Refuse Derived Fuel (RDF) as its fuel. The percentage of garbage in Murareja TPA that can be used as RDF is quite high, which is 28.7%, consisting of 15.35% paper waste, 2.35% rubber / leather waste, 2% garbage cloth, 1% wood waste, and 8% plastic waste. The waste is considered potentially to be produced into RDF. The production of RDF aims to convert the combustible waste fraction from 4K1P waste (Paper, Wood, Fabrics, Rubber / Leather and Plastics) to be fueled. Therefore it is important to know how much potential of 4K1P waste to be processed into RDF, and how optimal calorific value of RDF is to be used as fuel of pyrolysis incinerator on Waste Power Generation at Murareja TPA, Tegal regency. Based on the result of the research that has been done, the theoretical value of the theoretical value of 4K1P RDF briquette is 3677.0945 - 5507.114 [kcal / kg]. From the actual data obtained with laboratory testing the value of RDF beverage caloric waste 4K1P RDF amounted to 3973.45 [kCal / kg]. The optimal calorific value of RDF required as a pyrolysis incinerator fuel is 3248.809 [kcal / kg]. Based on the results of laboratory tests, the percentage of moisture content, ash content, volatile content and carbon content are 4.68%, 11.64%, 7.81% and 75.87% respectively.


Sign in / Sign up

Export Citation Format

Share Document