scholarly journals Utilization of Industrial Rosa damascena Mill. By-products and Cocoa Pod Husks as Natural Preservatives in Muffins

Author(s):  
Rosen Chochkov ◽  
Rositsa Denkova ◽  
Zapryana Denkova ◽  
Petko Denev ◽  
Ivelina Vasileva ◽  
...  

Cocoa Pod Husks (CPH) and by-product from supercritical CO2 extracted Rosa damascena Mill. (RDCO2) were used as biopreservatives in muffins. Both by-products were rich source of polyphenols: 28.3 ± 0.6 mg/g Dry Weight (DW) and 17.9 ± 0.7 mg/g DW RDCO2 and CPH, respectively, and exhibited potent antioxidant capacity: 449.1 ± 8.5 µmol Trolox Equivalents (TE)/g DW (by ORAC method) and 58.9 ± 2.1 µmol Gallic Acid Equivalents (GAE)/g DW (by HORAC method) for the RDCO2, and 373.8 ± 9.0 µmol TE/g DW (by ORAC) and 36.8 ± 3.8 µmol GAE/g DW (by HORAC) for the CPH. RDCO2 extracts successfully inhibited development of several important pathogenic and saprophytic microorganisms causing microbial spoilage of food systems. The control muffins were good for consumption up to the 17th day, while the products supplemented with RDCO2 and CPH: until 20th day of storage at 22 ± 0.5 °C. The amount of dietary fibers in muffins supplemented with both by-products increased 3 times (8.57 ± 0.12 %) compared to control (2.91 ± 0.12 %) and the polyphenolic compounds increased 2.5 times (from 50.0 ± 0.3 for the control to 185.9 ± 0.6 mg/g DW). For the first time by-product of supercritical CO2 extraction of Rosa damascena Mill. was characterized and used as natural and cheap biopreservative.

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1301
Author(s):  
Zully J. Suárez Montenegro ◽  
Gerardo Álvarez-Rivera ◽  
Jose A. Mendiola ◽  
Elena Ibáñez ◽  
Alejandro Cifuentes

This work reports the use of GC-QTOF-MS to obtain a deep characterization of terpenoid compounds recovered from olive leaves, which is one of the largest by-products generated by the olive oil industry. This work includes an innovative supercritical CO2 fractionation process based on the online coupling of supercritical fluid extraction (SFE) and dynamic adsorption/desorption for the selective enrichment of terpenoids in the different olive leaves extracts. The selectivity of different commercial adsorbents such as silica gel, zeolite, and aluminum oxide was evaluated toward the different terpene families present in olive leaves. Operating at 30 MPa and 60 °C, an adsorbent-assisted fractionation was carried out every 20 min for a total time of 120 min. For the first time, GC-QTOF-MS allowed the identification of 40 terpenoids in olive leaves. The GC-QTOF-MS results indicate that silica gel is a suitable adsorbent to partially retain polyunsaturated C10 and C15 terpenes. In addition, aluminum oxide increases C20 recoveries, whereas crystalline zeolites favor C30 terpenes recoveries. The different healthy properties that have been described for terpenoids makes the current SFE-GC-QTOF-MS process especially interesting and suitable for their revalorization.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 353
Author(s):  
Renata Baranauskienė ◽  
Petras Rimantas Venskutonis

The flowers of Narcissus poeticus are used for the isolation of valuable fragrance substances. So far, as the majority of these substances consist of volatile and sensitive to heat compounds, there is a need of developing effective methods for their recovery. In this study, freeze-dried N. poeticus inflorescences were extracted with pure supercritical CO2 (SFE-CO2) and its mixture with 5% co-solvent ethanol (EtOH) at 40 °C. Extract yields varied from 1.63% (12 MPa) to 3.12% (48 MPa, 5% EtOH). In total, 116 volatile compounds were identified by GC-TOF/MS in the extracts, which were divided into 20 different groups. Benzyl benzoate (9.44–10.22%), benzyl linoleate (1.72–2.17%) and benzyl alcohol (0.18–1.00%) were the major volatiles among aromatic compounds. The amount of the recovered benzyl benzoate in N. poeticus SFE-CO2 extracts varied from 58.98 ± 2.61 (24 MPa) to 91.52 ± 1.36 (48 MPa) mg/kg plant dry weight (pdw). α-Terpineol dominated among oxygenated monoterpenes (1.08–3.42%); its yield was from 9.25 ± 0.63 (12 MPa) to 29.88 ± 1.25 (48 MPa/EtOH) mg/kg pdw. Limonene was the major monoterpene hydrocarbon; (3E)-hexenol and heneicosanol dominated among alcohols and phenols; dihydroactinidiolide and 4,8,12,16-tetramethyl heptadecan-4-olide were the most abundant lactones; heptanal, nonanal, (2E,4E)-decadienal and octadecanal were the most abundant aldehydes. The most important prenol lipids were triterpenoid squalene, from 0.86 ± 0.10 (24 MPa) to 7.73 ± 0.18 (48 MPa/EtOH) mg/kg pdw and D-α-tocopherol, from 1.20 ± 0.04 (12 MPa) to 15.39 ± 0.31 (48 MPa/EtOH) mg/kg pdw. Aliphatic hydrocarbons (waxes) constituted the main part (41.47 to 54.93%) in the extracts; while in case of a 5% EtOH the percentage of alkanes was the lowest. The fraction of waxes may be removed for the separation of higher value fragrance materials. In general, the results obtained are promising for a wider application of SFE-CO2 for the recovery of fragrance substances from N. poeticus flowers.


2021 ◽  
Vol 168 ◽  
pp. 105093
Author(s):  
Luana C. dos Santos ◽  
Júlio C.F. Johner ◽  
Eupídio Scopel ◽  
Paula V.A. Pontes ◽  
Ana P.B. Ribeiro ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2201
Author(s):  
José Villacís-Chiriboga ◽  
Stefan Voorspoels ◽  
Maarten Uyttebroek ◽  
Jenny Ruales ◽  
John Van Camp ◽  
...  

The potential of supercritical CO2 (SC-CO2) for the extraction of bioactive compounds from mango by-products was assessed. Carotenoid extraction was optimized using a design of experiments based on temperature (35, 55 and 70 °C), pressure (10 and 35 MPa) and co-solvent addition (0%, 10% and 20% of ethanol or acetone). Moreover, the co-extraction of phenolic acids, flavonoids and xanthonoids was evaluated in a subset of parameters. Finally, a comparison was made between SC-CO2 and a two-step organic solvent extraction of the bioactive compounds from the pulp and peel fractions of two Ecuadorian varieties. The optimal extraction temperature was found to be dependent on the bioactive type, with phenolics requiring higher temperature than carotenoids. The optimal overall conditions, focused on maximal carotenoids recovery, were found to be 55 °C, 35 MPa and 20% of ethanol. The main carotenoid was β-carotene, while phenolics differed among the varieties. The bioactive content of the peel was up to 4.1-fold higher than in the pulp fraction. Higher antioxidant activity was found in the extracts obtained with organic solvents. SC-CO2 is a promising technology for the isolation of valuable compounds from mango by-products.


2019 ◽  
Vol 2 (1) ◽  
pp. 8
Author(s):  
Ivelina Vasileva ◽  
Lutsian Krastev ◽  
Anton Minchev Slavov ◽  
Nadezhda Petkova ◽  
Nikoleta Yantcheva ◽  
...  

Chocolate industry generates yearly large quantities of cacao wastes. These by-products pose to the manufacturers’ difficulties for disposal and represent also valuable sources of substances: polysaccharides, polyphenols, etc. The aim of the present work was to characterize cacao waste and search for possible food applications. The waste was investigated for total polyphenol content (5.86±0.39 mg GAE/g dry weight (DW)), flavonoids (0.77±0.02 mg QE/g DW), total dietary fibers (63.58±1.25% DW), proteins (15.80±0.11% DW), and hexane-soluble substances (13.39±0.08% DW). The antioxidant activity, evaluated by DPPH and FRAP (82.82±1.72 and 31.13±0.70 mM TE/g DW waste, respectively) suggested that cacao waste had potential as antioxidant supplement. The most abundant essential amino acids were lysine, tyrosine and phenylalanine: 8.55±0.19, 7.32±0.13 and 6.32±0.11 g/100g protein, respectively. Extraction with water, 50% and 96% ethanol was performed and it was found that the highest amount of polyphenols (and hence higher antioxidant activity) was extracted with 50% ethanol.The results from the analysis suggested that the cacao waste was a rich source of valuable substances and on that basis liqueurs with substituted cacao powder and waste Rosa damascena were prepared. The test panel suggested that the cacao husks were a promising constituent for low-alcoholic beverages.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vihang S. Thite ◽  
Anuradha S. Nerurkar

Abstract After chemical pretreatment, improved amenability of agrowaste biomass for enzymatic saccharification needs an understanding of the effect exerted by pretreatments on biomass for enzymatic deconstruction. In present studies, NaOH, NH4OH and H2SO4 pretreatments effectively changed visible morphology imparting distinct fibrous appearance to sugarcane bagasse (SCB). Filtrate analysis after NaOH, NH4OH and H2SO4 pretreatments yielded release of soluble reducing sugars (SRS) in range of ~0.17–0.44%, ~0.38–0.75% and ~2.9–8.4% respectively. Gravimetric analysis of pretreated SCB (PSCB) biomass also revealed dry weight loss in range of ~25.8–44.8%, ~11.1–16.0% and ~28.3–38.0% by the three pretreatments in the same order. Release of soluble components other than SRS, majorly reported to be soluble lignins, were observed highest for NaOH followed by H2SO4 and NH4OH pretreatments. Decrease or absence of peaks attributed to lignin and loosened fibrous appearance of biomass during FTIR and SEM studies respectively further corroborated with our observations of lignin removal. Application of commercial cellulase increased raw SCB saccharification from 1.93% to 38.84%, 25.56% and 9.61% after NaOH, H2SO4 and NH4OH pretreatments. Structural changes brought by cell wall degrading enzymes were first time shown visually confirming the cell wall disintegration under brightfield, darkfield and fluorescence microscopy. The microscopic evidence and saccharification results proved that the chemical treatment valorized the SCB by making it amenable for enzymatic saccharification.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 918
Author(s):  
Nóra Emilia Nagybákay ◽  
Michail Syrpas ◽  
Vaiva Vilimaitė ◽  
Laura Tamkutė ◽  
Audrius Pukalskas ◽  
...  

The article presents the optimization of supercritical CO2 extraction (SFE-CO2) parameters using response surface methodology (RSM) with central composite design (CCD) in order to produce single variety hop (cv. Ella) extracts with high yield and strong in vitro antioxidant properties. Optimized SFE-CO2 (37 MPa, 43 °C, 80 min) yielded 26.3 g/100 g pellets of lipophilic fraction. This extract was rich in biologically active α- and β-bitter acids (522.8 and 345.0 mg/g extract, respectively), and exerted 1481 mg TE/g extract in vitro oxygen radical absorbance capacity (ORAC). Up to ~3-fold higher extraction yield, antioxidant recovery (389.8 mg TE/g pellets) and exhaustive bitter acid extraction (228.4 mg/g pellets) were achieved under the significantly shorter time compared to the commercially used one-stage SFE-CO2 at 10–15 MPa and 40 °C. Total carotenoid and chlorophyll content was negligible, amounting to <0.04% of the total extract mass. Fruity, herbal, spicy and woody odor of extracts could be attributed to the major identified volatiles, namely β-pinene, β-myrcene, β-humulene, α-humulene, α-selinene and methyl-4-decenoate. Rich in valuable bioactive constituents and flavor compounds, cv. Ella hop SFE-CO2 extracts could find multipurpose applications in food, pharmaceutical, nutraceutical and cosmetics industries.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1105
Author(s):  
Fernanda Erpel ◽  
María Salomé Mariotti-Celis ◽  
Javier Parada ◽  
Franco Pedreschi ◽  
José Ricardo Pérez-Correa

Brown seaweed phlorotannins have shown the potential to promote several health benefits. Durvillaea incurvata and Lessonia spicata—species that are widely distributed in central and southern Chile—were investigated to obtain phlorotannin extracts with antioxidant and antihyperglycemic potential. The use of an environmentally friendly and food-grade glycerol-based pressurized hot liquid extraction (PHLE) process (15% v/v glycerol water) was assessed for the first time to obtain phlorotannins. Multiple effects were analyzed, including the effect of the species, harvesting area (Las Cruces and Niebla), and anatomical part (holdfast, stipe, and frond) on the extracts’ polyphenol content (TPC), antioxidant capacity (AC), and carbohydrate-hydrolyzing enzyme—α-glucosidase and α-amylase—inhibitory activity. Contaminants, such as mannitol, heavy metals (As, Cd, Pb, Hg, and Sn), and 5-hydroxymethylfurfural (HMF), were also determined. The anatomical part used demonstrated a significant impact on the extracts’ TPC and AC, with holdfasts showing the highest values (TPC: 95 ± 24 mg phloroglucinol equivalents/g dry extract; DPPH: 400 ± 140 μmol Trolox equivalents/g dry extract; ORAC: 560 ± 130 μmol TE/g dry extract). Accordingly, holdfast extracts presented the most potent α-glucosidase inhibition, with D. incurvata from Niebla showing an activity equivalent to fifteen times that of acarbose. Only one frond and stipe extract showed significant α-glucosidase inhibitory capacity. No α-amylase inhibition was found in any extract. Although no HMF was detected, potentially hazardous cadmium levels (over the French limit) and substantial mannitol concentrations—reaching up to 50% of the extract dry weight—were found in most seaweed samples and extracts. Therefore, further purification steps are suggested if food or pharmaceutical applications are intended for the seaweed PHLE extracts obtained in this study.


Sign in / Sign up

Export Citation Format

Share Document