scholarly journals Determination and Profiling of Secondary Metabolites in Aloe vera, Aloe arborescens and Aloe saponaria

Metabolomics is as an innovative technique for discriminating plant species. The objective of this study was to investigate the secondary metabolites of three different Aloe species, A. vera, A. arborescens, and A. saponaria profiled by 1 H-NMR analysis. Principal component analysis (PCA) derived from the 1 H-NMR spectra indicated a clear discrimination among the Aloe species, providing high predictability and good fitness of the PCA model (R2 = 0.928 and Q2 = 865). As observed in the PLS-DA score plot, discrimination was observed in the Aloe species with respect to primary metabolites including sugar and organic acid and secondary metabolites such as phenylpropanoids and carotenoids. A. vera was characterized by high levels of malate. On the other hand, as compared to the other Aloe species, A. arborescens was characterized by higher levels of aloenin and sugar metabolites such as sucrose and glucose. Furthermore, the secondary metabolites were quantitatively analyzed by HPLC, and the amounts of carotenoids including zeaxanthin, α- and β-carotene, and phenylpropanoids in A. arborescens were found to be significantly higher than those in the other Aloe species. In conclusion, we demonstrated that 1 H-NMR-based metabolomics with chemometric analysis can be used for the facile discrimination of Aloe species.

2022 ◽  
Vol 8 ◽  
Author(s):  
Yun-Seo Kil ◽  
Ah-Reum Han ◽  
Min-Jeong Hong ◽  
Jin-Baek Kim ◽  
Pil-Hoon Park ◽  
...  

Recently, wheat has attracted attention as a functional food, rather than a simple dietary energy source. Accordingly, whole-grain intake increases with an understanding of bioactive phytochemicals in bran. The development of colored wheat has drawn more attention to the value of bran owing to its nutritional quality, as well as the antioxidant properties of the colorant. The present 1H NMR-based chemometric study evaluated the compositional improvement of radiation-induced mutants in purple wheat by focusing on the predominant metabolites with high polarity. A total of 33 metabolites, including three choline derivatives, three sugar alcohols, four sugars, 13 amino acids, eight organic acids, and two nucleosides, were identified throughout the 1H NMR spectra, and quantification data were obtained for the identified metabolites via peak shape-based quantification. Principal component and hierarchical cluster analyses were conducted for performing multivariate analyses. The colored original wheat was found to exhibit improvements compared to yellow wheat in terms of the contents of primary metabolites, thus highlighting the importance of conducting investigations of polar metabolites. The chemometrics studies further revealed mutant lines with a compositional enhancement for metabolites, including lysine, proline, acetate, and glycerol.


HortScience ◽  
2021 ◽  
Vol 56 (1) ◽  
pp. 36-41
Author(s):  
Ivette Guzman ◽  
Krystal Vargas ◽  
Francisco Chacon ◽  
Calen McKenzie ◽  
Paul W. Bosland

This study investigated the diversity of carotenoids and phenolics in germplasm from three Capsicum (chile pepper) species, Capsicum annuum, Capsicum baccatum, and Capsicum chinense. Lutein, a yellow-pigmented carotenoid, and phenolics, a group of secondary metabolites, are reported to have health-promoting properties. The germplasm studied matured to a yellow color. The hypothesis was that all yellow fruits would contain either the carotenoid lutein, a yellow pigment, or a large amount of phenolics, a group of secondary metabolites that may be yellow among other colors. Thirty-one Capsicum accessions were grown in the field over a period of two seasons. On a dry weight (DW) basis, lutein ranged from 0.14 to 94.2 μg·g−1, and total phenolics ranged from 5.79 to 15.01 mg·g−1. No lutein was detected in one accession and β-carotene, another health-promoting compound, was lacking in four accessions. Accessions were grouped into four groups according to a principal component analysis plot. Results from this study indicate that in only nine accessions, lutein represented at least 50% of the total carotenoid amounts in each accession. These accessions are desirable not only as a source of dietary lutein, a natural yellow pigment, but also as genetic material that can be used to breed for higher lutein Capsicum. Therefore, yellow color is not a good indicator of lutein content and phytochemical analysis is required to determine the content of health-promoting compounds.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2189 ◽  
Author(s):  
Guang Yang ◽  
Kunnan Liang ◽  
Zaizhi Zhou ◽  
Xiyang Wang ◽  
Guihua Huang

The properties of teak wood, such as natural durability and beautiful color, are closely associated with wood extractives. In order to further understand the performance differences between teak heartwood and sapwood, we analyzed the chemical components of extractives from 12 wood samples using an ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS)-based metabolomics approach. In total, 691 metabolites were identified, and these were classified into 17 different categories. Clustering analysis and principal component analysis of metabolites showed that heartwood samples could be clearly separated from sapwood samples. Differential metabolite analysis revealed that the levels of primary metabolites, including carbohydrates, amino acids, lipids, and nucleotides, were significantly lower in the heartwood than in the sapwood. Conversely, many secondary metabolites, including flavonoids, phenylpropanoids, and quinones, had higher levels in the heartwood than in the sapwood. In addition, we detected 16 specifically expressed secondary metabolites in the heartwood, the presence of which may correlate with the durability and color of teak heartwood. Our study improves the understanding of differential metabolites between sapwood and heartwood of teak, and provides a reference for the study of heartwood formation.


2002 ◽  
Vol 34 (6) ◽  
pp. 521-525 ◽  
Author(s):  
Peter A. Cohen

AbstractFour anthraquinones were isolated from the foliose lichen, Lasallia papulosa (Ach.) Llano. Two of the anthraquinones are known compounds, previously isolated from Lasallia papulosa, while the other two were reported previously as secondary metabolites from laboratory-cultured Nephroma laevigatum, and are isolated here for the first time from lichens in their natural habitat. All compounds were characterized by UV spectrophotometry, mass spectrometry, 1H NMR and 13C NMR. The products were identified as 7-chloroemodin, valsarin (7-chloro-5-hydroxyemodin), 5-chloro-1-O-methylemodin and 5-chloro-1-O-methyl-ω-hydroxyemodin.


2019 ◽  
Vol 15 (1) ◽  
pp. 79
Author(s):  
Dinar Sari Cahyaningrum Wahyuni ◽  
Mutya Puti Wardianti ◽  
Yudi Rinanto ◽  
Soerya Dewi Marliyana

Genus <em>Curcuma</em>, Zingiberaceae, is a typical medicinal plant in tropical region especially in Indonesia. It has been studied to have antioxidant, antimicrobial, antitumor, anti-inflammatory and anticancer activities. However, little knowledge of the metabolic profile both primary and secondary metabolites have been reported. Thus, this study aims to investigate metabolic profiling both primary and secondary metabolites simultaneously in the <em>Curcuma</em> species based on proton nuclear magnetic resonance (<sup>1</sup>H-NMR) spectroscopy. The present work applied metabolomic study which measured the qualitative and quantitative characteristic metabolites. The <em>Curcuma</em> species, <em>Curcuma aeruginosa </em>Roxb., <em>Curcuma xanthorrhiza </em>Roxb., and <em>Curcuma longa </em>L., collected from Nguter, Sukoharjo, Indonesia. Two-dimensional (2D)-NMR techniques were applied to further identify a number of different types of compounds. Multivariate data analysis such as Principal Component Analysis (PCA) applied to reveal differences among species. A clear difference occurred among 3 Curcuma species. Primary metabolites responsible for the discrimination are alanine (<em>C. xanthorrhiza</em> Roxb. was 3.78 times higher than in <em>C. longa </em>L), sugars (<em>C. xanthorrhiza</em> Roxb. were 6.03 and 3.81 times higher in <em>C. aeruginosa </em>Roxb. and <em>C. longa </em>L. respectively). Besides, secondary metabolites which differed among 3 species are curcumin (<em>C. xanthorrhiza </em>Roxb. were 38.25 and 25 times higher than in <em>C. aeruginosa</em> Roxb.) and xanthorrhizol (<em>C. longa </em>L. were 62 and 44.4 times higher than in <em>C aeruginosa </em>Roxb.).


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 424 ◽  
Author(s):  
Yoon ◽  
Choi ◽  
Kim ◽  
Oh ◽  
Kim ◽  
...  

The commercial use of Panax ginseng berries is increasing as P. ginseng berries are known to contain large amounts of ginsenosides, and many pharmacological activities have been reported for the various ginsenosides. For the proper use of P. ginseng berries, it is necessary to study efficient and accurate quality control and the profiling of the overall composition of each cultivar. Ginseng berry samples from seven cultivars (Eumseung, Chung-buk Province, Republic of Korea) were analyzed using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-QTOF/MS) for profiling of the ginsenosides, and high-resolution magic-angle-spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy for profiling of the primary metabolites. Comparing twenty-six ginsenoside profiles between the variant representatives and between the violet-stem variant, Kumpoong and Sunwon were classified. In the case of primary metabolites, the cultivars Kumpoong and Gopoong were classified. As a result of correlation analyses of the primary and secondary metabolites, in the Gopoong cultivar, the metabolism was found to lean toward energy metabolism rather than ginsenoside synthesis, and accumulation of osmolytes was low. The Gopoong cultivar had higher levels of most of the amino acids, such as arginine, phenylalanine, isoleucine, threonine, and valine, and it contained the highest level of choline and the lowest level of myo-inositol. Except for these, there were no significant differences of primary metabolites. In the Kumpoong cultivar, the protopanaxatriol (PPT)-type ginsenosides, ginsenoside Re and ginsenoside Rg2, were much lower than in the other cultivars, while the other PPT-type ginsenosides were inversely found in much higher amounts than in other cultivars. The Sunwon cultivar showed that variations of PPT-type ginsenosides were significantly different between samples. However, the median values of PPT-type ginsenosides of Sunwon showed similar levels to those of Kumpoong. The difference in primary metabolites used for metabolism for survival was found to be small in our results. Our data demonstrated the characteristics of each cultivar using profiling data of the primary and secondary metabolites, especially for Gopoong, Kumpoong, and Sunwon. These profiling data provided important information for further research and commercial use.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1126
Author(s):  
Shipeng Li ◽  
Ye Chen ◽  
Ying Duan ◽  
Yinhui Zhao ◽  
Di Zhang ◽  
...  

Salsola collina Pall has a long history of being used as a traditional medicine to treat hypertension, headache, insomnia, constipation and vertigo. However, only a few biologically active substances have been identified from S. collina. Here, the shoots and roots of S. collina, namely L-Sc and R-Sc, were studied. The primary and secondary metabolites were investigated using ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). A total of 637 putative metabolites were identified and these metabolites were mainly classified into ten different categories. Correlation analysis, hierarchical clustering analysis, principal component analysis and orthogonal partial least squares discriminant analysis of metabolites showed that the L-Sc samples could be clearly separated from the R-Sc samples. Differential accumulated metabolite analysis revealed that most of differential primary metabolites were significantly lower in the L-Sc than in the R-Sc. Conversely, the major differential secondary metabolites had higher levels in the L-Sc than in the R-Sc. Further analysis indicated that the flavonoids were the major putative antioxidant components and most of putative antioxidant components exhibited higher relative concentrations in the L-Sc than the R-Sc. These results improve our understanding of metabolite accumulation and provide a reference for the study of medicinal value in S. collina.


2018 ◽  
Vol 18 (2) ◽  
pp. 115-131
Author(s):  
Liang Heng-Yu ◽  
Su Ning ◽  
Guo Kun ◽  
Wang Yuan ◽  
Yang De-Yu

Five Saccharomyces cerevisiae strains (Chinese indigenous yeasts SC5, WC5, SC8, CC17 and commercial starter F15) were inoculated into Cabernet sauvignon grape must and fermented at pilot scale. For the first time, combination of 1H NMR, HS-SPME/GC-MS and HPLC-DAD-ESI-MS/MS metabonomic profiling techniques was performed to analyze the global chemical fingerprints of sampled wines at the end of alcoholic and malolactic fermentation respectively, then 13 non-volatile flavor compounds, 52 volatile organic aromas and 43 polyphenolic molecules were identified and determined correspondently. All principal component analysis (PCA) of two fermentation stages based on the analytical results of 1H NMR, HS-SPME/GC-MS and HPLC-DAD-ESI-MS/MS divided these strains into three clusters: (1) SC5 and SC8, (2) WC5 and F15 and (3) CC17. The wine fermented by indigenous yeast, CC17, showed a very unique chemical profile, such as low pH and high color intensity, reduced amino acids (including proline) and the lowest total higher alcohols levels, most of the fixed acids, glycerol, ethyl esters and anthocyanins concentrations. The statistical results indicate that CC17 strain possesses very special anabolism and catabolism abilities on such substances in grape juice and has potentiality to produce characteristic wines with high qualities.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1579
Author(s):  
Sophie Hellstrand ◽  
Filip Ottosson ◽  
Einar Smith ◽  
Louise Brunkwall ◽  
Stina Ramne ◽  
...  

Irregular dietary intakes impairs estimations from food records. Biomarkers and method combinations can be used to improve estimates. Our aim was to examine reproducibility from two assessment methods, compare them, and validate intakes against objective biomarkers. We used the Malmö Offspring Study (55% women, 18–71 y) with data from a 4-day food record (4DFR) and a short food frequency questionnaire (SFFQ) to compare (1) repeated intakes (n = 180), (2) intakes from 4DFR and SFFQ (n = 1601), and (3) intakes of fatty fish, fruits and vegetables, and citrus with plasma biomarkers (n = 1433) (3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid [CMPF], β-carotene and proline betaine). We also combined 4DFR and SFFQ estimates using principal component analysis (PCA). Moderate correlations were seen between repeated intakes (4DFR median ρ = 0.41, SFFQ median ρ = 0.59) although lower for specific 4DFR-items, especially fatty/lean fish (ρ ≤ 0.08). Between-method correlations (median ρ = 0.33) were higher for intakes of overall food groups compared to specific foods. PCA scores for citrus (proline betaine ρ = 0.53) and fruits and vegetables (β-carotene: ρ = 0.39) showed the highest biomarker correlations, whereas fatty fish intake from the SFFQ per se showed the highest correlation with CMPF (ρ = 0.46). To conclude, the reproducibility of SFFQ data was superior to 4DFR data regarding irregularly consumed foods. Method combination could slightly improve fruit and vegetable estimates, whereas SFFQ data gave most valid fatty fish intake.


Author(s):  
Xing Wang ◽  
Henk G. Jansen ◽  
Haico Duin ◽  
Harro A. J. Meijer

AbstractThere are two officially approved methods for stable isotope analysis for wine authentication. One describes δ18O measurements of the wine water using Isotope Ratio Mass Spectrometry (IRMS), and the other one uses Deuterium-Nuclear Magnetic Resonance (2H-NMR) to measure the deuterium of the wine ethanol. Recently, off-axis integrated cavity output (laser) spectroscopy (OA-ICOS) has become an easier alternative to quantify wine water isotopes, thanks to the spectral contaminant identifier (SCI). We utilized an OA-ICOS analyser with SCI to measure the δ18O and δ2H of water in 27 wine samples without any pre-treatment. The OA-ICOS results reveal a wealth of information about the growth conditions of the wines, which shows the advantages to extend the official δ18O wine water method by δ2H that is obtained easily from OA-ICOS. We also performed high-temperature pyrolysis and chromium reduction combined with IRMS measurements to illustrate the “whole wine” isotope ratios. The δ18O results of OA-ICOS and IRMS show non-significant differences, but the δ2H results of both methods differ much more. As the δ2H difference between these two methods is mainly caused by ethanol, we investigated the possibility to deduce deuterium of wine ethanol from this difference. The results present large uncertainties and deviate from the obtained 2H-NMR results. The deviation is caused by the other constituents in the wine, and the uncertainty is due to the limited precision of the SCI-based correction, which need to improve to obtain the 2H values of ethanol as alternative for the 2H-NMR method.


Sign in / Sign up

Export Citation Format

Share Document