scholarly journals Phase Equilibrium of Biologically Active Systems 4,6-dinitro-5,7-dichlorobenzofuroxane and 5-nitro-4,6-dichlorobenzofuroxane

2020 ◽  
Vol 9 (4) ◽  
pp. 26-31
Author(s):  
L. M. Yusupova ◽  
A. N. Khuziakhmetova ◽  
E. G. Gorelova ◽  
V. K. Mingazova ◽  
I. V. Galkina

Introduction. One of the intensive ways to increase the therapeutic efficacy and safety of a drug is a combination of several already known substances or chemical compounds, leading to the appearance of a synergistic effect. This method of creating a medicinal product is one of the most important trends in recent times, since the synergistic effect allows one to achieve greater pharmacological activity, expand the range of medical applications and reduce the toxic effect of the drug on the organism. These pharmaceutical active substances include a binary mixture "Dimixan"(mixture 4,6-dinitro-5,7-dichlorobenzofuroxan (4,6-DNDHBFO) and 5-nitro-4,6-dichlorobenzofuroxan (5-NDHBFO). They demonstrate potentiated synergism to the ultra-resistant mold fungus of the species Aspergillius niger. However, the synergy mechanism of the mixture of 5-NDHBFO and 4,6-DNDHBFO is not fully studied. The results of determining the thermodynamic characteristics and phase equilibria in these systems will make it possible to determine the nature of the interaction between 5-NDCBPO and 4,6-DNDCBPO, which will undoubtedly contribute to the optimal organization of the production of a promising drug.Aim. Establishing the nature of the interaction between 5-NDHBFO and 4,6-DNDHBFO in the system.Materials and methods. Using differential scanning calorimetry (DSC), phase equilibria in the 5-NDHBFO and 4,6-DNDHBFO systems were studied in a wide range of component concentrations. From the state diagram, the thermodynamic characteristics of the eutectic were determined: the enthalpy and entropy of melting of mixtures of 5-NDHBFO – 4,6-DNDHBFO at different ratios of components.Results and discussion. Based on the results of the study, phase reactions with the physicochemical interaction of 5-NDHBFO and 4,6-DNDHBFO in two-component systems with the formation of eutectic alloys of the "solid solution" type are identified. The specific values of the enthalpies of melting of alloys of eutectic compositions were determined, from which the entropies of melting were calculated. The results of a study of the density of eutectic compositions of 5-NDHBFO – 4,6-DNDHBFO indicate the formation of an interstitial solid solution.Conclusion. The nature of the interaction between 5-NDHBFO and 4,6-DNDHBFO in the system, leading to the appearance of a synergy effect, has been established. The results obtained are important for predicting the eutectic compositions of 5-NDHBFO and 4,6-DNDHBFO as active pharmaceutical ingredient with increased biological activity.

2020 ◽  
Vol 14 (2) ◽  
pp. 15
Author(s):  
Zaidah Zainal ariffin

Fungi is known to produce a wide range of biologically active metabolites and enzymes. Enzymes produced by fungi are utilized in food and pharmaceutical industries because of their rich enzymatic profile. Filamentous fungi are particularly interesting due to their high production of extracellular enzymes which has a large industrial potential. The aim of this study is to isolate potential soil fungi species that are able to produce functional enzymes for industries. Five Aspergillus species were successfully isolated from antibiotic overexposed soil (GPS coordinate of N3.093219 E101.40269) by standard microbiological method. The isolated fungi were identified via morphological observations and molecular tools; polymerase chain reactions, ITS 1 (5’- TCC GTA GGT GAA CCT GCG G3’) forward primer and ITS 4 (5’-TCC TCC GCT TAT TGA TAT GC-3’) reverse primer. The isolated fungi were identified as Aspergillus sydowii strain SCAU066, Aspergillus tamarii isolate TN-7, Aspergillus candidus strain KUFA 0062, Aspergillus versicolor isolate BAB-6580, and Aspergillus protuberus strain KAS 6024. Supernatant obtained via submerged fermentation of the isolated fungi in potato dextrose broth (PDB) and extracted via centrifugation was loaded onto specific media to screen for the production of xylanolytic, cellulolytic and amylolytic enzymes. The present findings indicate that Aspergillus sydowii strain SCAU066 and Aspergillus versicolor isolate BAB-6580 have great potential as an alternative source of xylanolytic, cellulolytic and amylolytic enzymes.


Biomics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 389-393
Author(s):  
D.V. Mitrofanov ◽  
N.V. Budnikova

The drone brood contains a large number of substances with antioxidant activity. These substances require stabilization and strict adherence to storage conditions. Among these substances are unique decenoic acids, the content of which is an indicator of the quality of drone brood and products based on it. The ability of drone brood to reduce the manifestations of oxidative stress is shown. There are dietary supplements for food and drugs based on drone brood, which are used for a wide range of diseases. Together with drone brood, chitosan-containing products, propolis, royal jelly can be used. They enrich the composition with their own biologically active substances and affect the preservation of the biologically active substances of the drone brood. Promising are the products containing, in addition to the drone brood, a chitin-chitosan-melanin complex from bees, propolis, royal jelly. The chitin-chitosan-melanin complex in the amount of 5% in the composition of the adsorbent practically does not affect the preservation of decenic acids, while in the amount of 2% and 10% it somewhat worsens. The acid-soluble and water-soluble chitosan of marine crustaceans significantly worsens the preservation of decenoic acids in the product. Drone brood with royal jelly demonstrates a rather high content of decenoic acids. When propolis is introduced into the composition of the product, the content of decenoic acids increases according to the content of propolis.


2019 ◽  
Vol 26 (23) ◽  
pp. 4323-4354 ◽  
Author(s):  
Ana Cristina Lima Leite ◽  
José Wanderlan Pontes Espíndola ◽  
Marcos Veríssimo de Oliveira Cardoso ◽  
Gevanio Bezerra de Oliveira Filho

Background: Privileged motifs are recurring in a wide range of biologically active compounds that reach different pharmaceutical targets and pathways and could represent a suitable start point to access potential candidates in the neglected diseases field. The current therapies to treat these diseases are based in drugs that lack of the desired effectiveness, affordable methods of synthesis and allow a way to emergence of resistant strains. Due the lack of financial return, only few pharmaceutical companies have been investing in research for new therapeutics for neglected diseases (ND). Methods: Based on the literature search from 2002 to 2016, we discuss how six privileged motifs, focusing phthalimide, isatin, indole, thiosemicarbazone, thiazole, and thiazolidinone are particularly recurrent in compounds active against some of neglected diseases. Results: It was observed that attention was paid particularly for Chagas disease, malaria, tuberculosis, schistosomiasis, leishmaniasis, dengue, African sleeping sickness (Human African Trypanosomiasis - HAT) and toxoplasmosis. It was possible to verify that, among the ND, antitrypanosomal and antiplasmodial activities were between the most searched. Besides, thiosemicarbazone moiety seems to be the most versatile and frequently explored scaffold. As well, phthalimide, isatin, thiazole, and thiazolidone nucleus have been also explored in the ND field. Conclusion: Some described compounds, appear to be promising drug candidates, while others could represent a valuable inspiration in the research for new lead compounds.


2020 ◽  
Vol 26 (27) ◽  
pp. 3234-3250
Author(s):  
Sushil K. Kashaw ◽  
Prashant Sahu ◽  
Vaibhav Rajoriya ◽  
Pradeep Jana ◽  
Varsha Kashaw ◽  
...  

Potential short interfering RNAs (siRNA) modulating gene expression have emerged as a novel therapeutic arsenal against a wide range of maladies and disorders containing cancer, viral infections, bacterial ailments and metabolic snags at the molecular level. Nanogel, in the current medicinal era, displayed a comprehensive range of significant drug delivery prospects. Biodegradation, swelling and de-swelling tendency, pHsensitive drug release and thermo-sensitivity are some of the renowned associated benefits of nanogel drug delivery system. Global researches have also showed that nanogel system significantly targets and delivers the biomolecules including DNAs, siRNA, protein, peptides and other biologically active molecules. Biomolecules delivery via nanogel system explored a wide range of pharmaceutical, biomedical engineering and agro-medicinal application. The siRNAs and DNAs delivery plays a vivacious role by addressing the hitches allied with chronic and contemporary therapeutic like generic possession and low constancy. They also incite release kinetics approach from slow-release while mingling to rapid release at the targets will be beneficial as interference RNAs delivery carriers. Therefore, in this research, we focused on the latest improvements in the delivery of siRNA loaded nanogels by enhancing the absorption, stability, sensitivity and combating the hindrances in cellular trafficking and release process.


2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


2016 ◽  
Vol 700 ◽  
pp. 142-151 ◽  
Author(s):  
Sergey A. Belyakov ◽  
Christopher M. Gourlay

Sn-3Ag-3Bi-3In solder has been investigated to improve the understanding of microstructure formation in this solder during solidification and soldering to Cu and Ni substrates. The as-solidified microstructures of Sn-3Ag-3Bi-3In samples were found to consist of a significant fraction of βSn dendrites with a complex eutectic between the dendrites. In total five phases were observed to form during solidification: βSn, Ag3Sn, Bi, ζAg and a “Sn-In-Bi” ternary compound. Soldering of Sn-3Ag-3Bi-3In to substrates changed the phase equilibria in the system and caused the formation of additional phases: Cu6Sn5 during soldering to Cu and Ni3Sn4 and metastable NiSn4 during soldering to Ni. It is shown that metastable NiSn4 forms as a primary phase in a complex 5-component Sn-3Ag-3Bi-3In-Ni system. In and Bi were detected in solid solution in the βSn matrix in amounts of ~1.5-2at% and ~1.2at% respectively. Bi also existed as fine particles of two distinct types. (i): sub-micron (<500nm) coral-like particles and (ii) facetted particles measuring up to 7-8 μm.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3579
Author(s):  
Svetlana A. Popova ◽  
Evgenia V. Pavlova ◽  
Oksana G. Shevchenko ◽  
Irina Yu. Chukicheva ◽  
Aleksandr V. Kutchin

The pyrazoline ring is defined as a “privileged structure” in medicinal chemistry. A variety of pharmacological properties of pyrazolines is associated with the nature and position of various substituents, which is especially evident in diarylpyrazolines. Compounds with a chalcone fragment show a wide range of biological properties as well as high reactivity which is primarily due to the presence of an α, β-unsaturated carbonyl system. At the same time, bicyclic monoterpenoids deserve special attention as a source of a key structural block or as one of the pharmacophore components of biologically active molecules. A series of new diarylpyrazoline derivatives based on isobornylchalcones with different substitutes (MeO, Hal, NO2, N(Me)2) was synthesized. Antioxidant properties of the obtained compounds were comparatively evaluated using in vitro model Fe2+/ascorbate-initiated lipid peroxidation in the substrate containing brain lipids of laboratory mice. It was demonstrated that the combination of the electron-donating group in the para-position of ring B and OH-group in the ring A in the structure of chalcone fragment provides significant antioxidant activity of synthesized diarylpyrazoline derivatives.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3166
Author(s):  
Anthi Petrou ◽  
Maria Fesatidou ◽  
Athina Geronikaki

Background: Thiazole is a good pharmacophore nucleus due to its various pharmaceutical applications. Its derivatives have a wide range of biological activities such as antioxidant, analgesic, and antimicrobial including antibacterial, antifungal, antimalarial, anticancer, antiallergic, antihypertensive, anti-inflammatory, and antipsychotic. Indeed, the thiazole scaffold is contained in more than 18 FDA-approved drugs as well as in numerous experimental drugs. Objective: To summarize recent literature on the biological activities of thiazole ring-containing compounds Methods: A literature survey regarding the topics from the year 2015 up to now was carried out. Older publications were not included, since they were previously analyzed in available peer reviews. Results: Nearly 124 research articles were found, critically analyzed, and arranged regarding the synthesis and biological activities of thiazoles derivatives in the last 5 years.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Marcos L. Corazza ◽  
Julia Trancoso

Abstract The search for sustainable ideas has gained prominence in recent decades at all levels of society since it has become imperative an economic, social, and environmental development in an integrated manner. In this context, biorefineries are currently present as the technology that best covers all these parameters, as they add the benefits of waste reuse, energy cogeneration, and fossil fuel substitution. Thus, the study of the various applicable biological matrices and exploring the technical capabilities of these processes become highly attractive. Thermodynamic modeling acts in this scenario as a fundamental tool for phase behavior predictions in process modeling, design, and optimization. Thus, this work aimed to systematize, using the PRISMA statement for systematic reviews, the information published between 2010 and 2020 on phase equilibria modeling in systems related to biorefineries to organize what is already known about the subject. As a result, 236 papers were categorized in terms of the year, country, type of phase equilibria, and thermodynamic model used. Also, the phase behavior predictions of different thermodynamic models under the same process conditions were qualitatively compared, establishing PC-SAFT as the model that best represents the great diversity of interest systems for biorefineries in a wide range of conditions.


Sign in / Sign up

Export Citation Format

Share Document