scholarly journals Targeting the Mitochondria-Proteostasis Axis to Delay Aging

Author(s):  
Andreas Zimmermann ◽  
Corina Madreiter-Sokolowski ◽  
Sarah Stryeck ◽  
Mahmoud Abdellatif

Human life expectancy continues to grow globally, and so does the prevalence of age-related chronic diseases, causing a huge medical and economic burden on society. Effective therapeutic options for these disorders are scarce, and even if available, are typically limited to a single comorbidity in a multifaceted dysfunction that inevitably affects all organ systems. Thus, novel therapies that target fundamental processes of aging itself are desperately needed. In this article, we summarize current strategies that successfully delay aging and related diseases by targeting mitochondria and protein homeostasis. In particular, we focus on autophagy, as a fundamental proteostatic process that is intimately linked to mitochondrial quality control. We present genetic and pharmacological interventions that effectively extend health- and life-span by acting on specific mitochondrial and pro-autophagic molecular targets. In the end, we delve into the crosstalk between autophagy and mitochondria, in what we refer to as the mitochondria-proteostasis axis, and explore the prospect of targeting this crosstalk to harness maximal therapeutic potential of anti-aging interventions.

Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1056 ◽  
Author(s):  
Davin Lee ◽  
Min Gu Jo ◽  
Seung Yeon Kim ◽  
Chang Geon Chung ◽  
Sung Bae Lee

Advances in medicine and dietary standards over recent decades have remarkably increased human life expectancy. Unfortunately, the chance of developing age-related diseases, including neurodegenerative diseases (NDDs), increases with increased life expectancy. High metabolic demands of neurons are met by mitochondria, damage of which is thought to contribute to the development of many NDDs including Parkinson’s disease (PD). Mitochondrial damage is closely associated with the abnormal production of reactive oxygen species (ROS), which are widely known to be toxic in various cellular environments, including NDD contexts. Thus, ways to prevent or slow mitochondrial dysfunction are needed for the treatment of these NDDs. In this review, we first detail how ROS are associated with mitochondrial dysfunction and review the cellular mechanisms, such as the mitochondrial quality control (MQC) system, by which neurons defend against both abnormal production of ROS and the subsequent accumulation of damaged mitochondria. We next highlight previous studies that link mitochondrial dysfunction with PD and how dietary antioxidants might provide reinforcement of the MQC system. Finally, we discuss how aging plays a role in mitochondrial dysfunction and PD before considering how healthy aging through proper diet and exercise may be salutary.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jinlin Liu ◽  
Li Zhong ◽  
Rui Guo

Cardiovascular disease (CVD) is the leading cause of death in the world. The mechanism behind CVDs has been studied for decades; however, the pathogenesis is still controversial. Mitochondrial homeostasis plays an essential role in maintaining the normal function of the cardiovascular system. The alterations of any protein function in mitochondria may induce abnormal mitochondrial quality control and unexpected mitochondrial dysfunction, leading to CVDs. Posttranslational modifications (PTMs) affect protein function by reversibly changing their conformation. This review summarizes how common and novel PTMs influence the development of CVDs by regulating mitochondrial quality control. It provides not only ideas for future research on the mechanism of some types of CVDs but also ideas for CVD treatments with therapeutic potential.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 598 ◽  
Author(s):  
Anna Picca ◽  
Riccardo Calvani ◽  
Hélio José Coelho-Junior ◽  
Francesco Landi ◽  
Roberto Bernabei ◽  
...  

Mitochondrial dysfunction and failing mitochondrial quality control (MQC) are major determinants of aging. Far from being standalone organelles, mitochondria are intricately related with cellular other compartments, including lysosomes. The intimate relationship between mitochondria and lysosomes is reflected by the fact that lysosomal degradation of dysfunctional mitochondria is the final step of mitophagy. Inter-organelle membrane contact sites also allow bidirectional communication between mitochondria and lysosomes as part of nondegradative pathways. This interaction establishes a functional unit that regulates metabolic signaling, mitochondrial dynamics, and, hence, MQC. Contacts of mitochondria with the endoplasmic reticulum (ER) have also been described. ER-mitochondrial interactions are relevant to Ca2+ homeostasis, transfer of phospholipid precursors to mitochondria, and integration of apoptotic signaling. Many proteins involved in mitochondrial contact sites with other organelles also participate to degradative MQC pathways. Hence, a comprehensive assessment of mitochondrial dysfunction during aging requires a thorough evaluation of degradative and nondegradative inter-organelle pathways. Here, we present a geroscience overview on (1) degradative MQC pathways, (2) nondegradative processes involving inter-organelle tethering, (3) age-related changes in inter-organelle degradative and nondegradative pathways, and (4) relevance of MQC failure to inflammaging and age-related conditions, with a focus on Parkinson’s disease as a prototypical geroscience condition.


2020 ◽  
Vol 49 (1) ◽  
pp. 41-67 ◽  
Author(s):  
Linhao Ruan ◽  
Yuhao Wang ◽  
Xi Zhang ◽  
Alexis Tomaszewski ◽  
Joshua T. McNamara ◽  
...  

Mitochondria are essential organelles in eukaryotes. Most mitochondrial proteins are encoded by the nuclear genome and translated in the cytosol. Nuclear-encoded mitochondrial proteins need to be imported, processed, folded, and assembled into their functional states. To maintain protein homeostasis (proteostasis), mitochondria are equipped with a distinct set of quality control machineries. Deficiencies in such systems lead to mitochondrial dysfunction, which is a hallmark of aging and many human diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancer. In this review, we discuss the unique challenges and solutions of proteostasis in mitochondria. The import machinery coordinates with mitochondrial proteases and chaperones to maintain the mitochondrial proteome. Moreover, mitochondrial proteostasis depends on cytosolic protein quality control mechanisms during crises. In turn, mitochondria facilitate cytosolic proteostasis. Increasing evidence suggests that enhancing mitochondrial proteostasis may hold therapeutic potential to protect against protein aggregation–associated cellular defects.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yifei Zhou ◽  
Xueqing Wang ◽  
Mengjiao Song ◽  
Zhidong He ◽  
Guizhong Cui ◽  
...  

Abstract Macroautophagy, a key player in protein quality control, is proposed to be systematically impaired in distinct tissues and causes coordinated disruption of protein homeostasis and ageing throughout the body. Although tissue-specific changes in autophagy and ageing have been extensively explored, the mechanism underlying the inter-tissue regulation of autophagy with ageing is poorly understood. Here, we show that a secreted microRNA, mir-83/miR-29, controls the age-related decrease in macroautophagy across tissues in Caenorhabditis elegans. Upregulated in the intestine by hsf-1/HSF1 with age, mir-83 is transported across tissues potentially via extracellular vesicles and disrupts macroautophagy by suppressing CUP-5/MCOLN, a vital autophagy regulator, autonomously in the intestine as well as non-autonomously in body wall muscle. Mutating mir-83 thereby enhances macroautophagy in different tissues, promoting protein homeostasis and longevity. These findings thus identify a microRNA-based mechanism to coordinate the decreasing macroautophagy in various tissues with age.


2016 ◽  
Vol 2016 ◽  
pp. 1-24 ◽  
Author(s):  
Sentiljana Gumeni ◽  
Ioannis P. Trougakos

Mitochondria are highly dynamic organelles that provide essential metabolic functions and represent the major bioenergetic hub of eukaryotic cell. Therefore, maintenance of mitochondria activity is necessary for the proper cellular function and survival. To this end, several mechanisms that act at different levels and time points have been developed to ensure mitochondria quality control. An interconnected highly integrated system of mitochondrial and cytosolic chaperones and proteases along with the fission/fusion machinery represents the surveillance scaffold of mitostasis. Moreover, nonreversible mitochondrial damage targets the organelle to a specific autophagic removal, namely, mitophagy. Beyond the organelle dynamics, the constant interaction with the ubiquitin-proteasome-system (UPS) has become an emerging aspect of healthy mitochondria. Dysfunction of mitochondria and UPS increases with age and correlates with many age-related diseases including cancer and neurodegeneration. In this review, we discuss the functional cross talk of proteostasis and mitostasis in cellular homeodynamics and the impairment of mitochondrial quality control during ageing, cancer, and neurodegeneration.


2020 ◽  
Vol 21 (2) ◽  
pp. 643 ◽  
Author(s):  
Willy Roque ◽  
Karina Cuevas-Mora ◽  
Freddy Romero

Idiopathic pulmonary fibrosis (IPF) is age-related interstitial lung disease of unknown etiology. About 100,000 people in the U.S have IPF, with a 3-year median life expectancy post-diagnosis. The development of an effective treatment for pulmonary fibrosis will require an improved understanding of its molecular pathogenesis and the “normal” and “pathological’ hallmarks of the aging lung. An important characteristic of the aging organism is its lowered capacity to adapt quickly to, and counteract, disturbances. While it is likely that DNA damage, chronic endoplasmic reticulum (ER) stress, and accumulation of heat shock proteins are capable of initiating tissue repair, recent studies point to a pathogenic role for mitochondrial dysfunction in the development of pulmonary fibrosis. These studies suggest that damage to the mitochondria induces fibrotic remodeling through a variety of mechanisms including the activation of apoptotic and inflammatory pathways. Mitochondrial quality control (MQC) has been demonstrated to play an important role in the maintenance of mitochondrial homeostasis. Different factors can induce MQC, including mitochondrial DNA damage, proteostasis dysfunction, and mitochondrial protein translational inhibition. MQC constitutes a complex signaling response that affects mitochondrial biogenesis, mitophagy, fusion/fission and the mitochondrial unfolded protein response (UPRmt) that, together, can produce new mitochondria, degrade the components of the oxidative complex or clearance the entire organelle. In pulmonary fibrosis, defects in mitophagy and mitochondrial biogenesis have been implicated in both cellular apoptosis and senescence during tissue repair. MQC has also been found to have a role in the regulation of other protein activity, inflammatory mediators, latent growth factors, and anti-fibrotic growth factors. In this review, we delineated the role of MQC in the pathogenesis of age-related pulmonary fibrosis.


2018 ◽  
Vol 15 (9) ◽  
pp. 543-554 ◽  
Author(s):  
Anna Picca ◽  
Robert T. Mankowski ◽  
Jonathon L. Burman ◽  
Luca Donisi ◽  
Jae-Sung Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document