scholarly journals Signaling Modulation by miRNA-221-3p During Tooth Morphogenesis in Mice

Author(s):  
Yam Prasad Aryal ◽  
Tae-Young Kim ◽  
Eui-Seon Lee ◽  
Chang-Hyeon An ◽  
Ji-Youn Kim ◽  
...  

miRNAs are conserved short non-coding RNAs that play a role in the modulation of various biological pathways during tissue and organ morphogenesis. In this study, the function of miRNA-221-3p in tooth development, through its loss or gain in function was evaluated. A variety of techniques were utilized to evaluate detailed functional roles of miRNA-221-3p during odontogenesis, including in vitro tooth cultivation, renal capsule transplantation, in situ hybridization, real-time PCR, and immunohistochemistry. Two-day in vitro tooth cultivation at E13 identified altered cellular events, including cellular proliferation, apoptosis, adhesion, and cytoskeletal arrangement, with the loss and gain of miRNA-221-3p. qPCR analysis revealed alterations in gene expression of tooth-related signaling molecules, including β-catenin, Bmp2, Bmp4, Fgf4, Ptch1, and Shh, when inhibited with miRNA-221-3p and mimic. Also, the inhibition of miRNA-221-3p demonstrated increased mesenchymal localizations of pSMAD1/5/8, alongside decreased expression patterns of Shh and Fgf4 within inner enamel epithelium (IEE) in E13 + 2 days in vitro cultivated teeth. Moreover, 1-week renal transplantation of in vitro cultivated teeth had smaller tooth size with reduced enamel and dentin matrices, along with increased cellular proliferation and Shh expression along the Hertwig epithelial root sheath (HERS), within the inhibitor group. Similarly, in 3-week renal calcified teeth, the overexpression of miRNA-221-3p did not affect tooth phenotype, while the loss of function resulted in long and slender teeth with short mesiodistal length. This study provides evidence that a suitable level of miRNA-221-3p is required for the modulation of major signaling pathways, including Wnt, Bmp, and Shh, during tooth morphogenesis.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1618
Author(s):  
Kristina Kiisholts ◽  
Kaido Kurrikoff ◽  
Piret Arukuusk ◽  
Ly Porosk ◽  
Maire Peters ◽  
...  

Gene therapy is a powerful tool for the development of new treatment strategies for various conditions, by aiming to transport biologically active nucleic acids into diseased cells. To achieve that goal, we used highly potential delivery vectors, cell-penetrating peptides (CPPs), as oligonucleotide carriers for the development of a therapeutic approach for endometriosis and cancer. Despite marked differences, both of these conditions still exhibit similarities, like excessive, uncoordinated, and autonomous cellular proliferation and invasion, accompanied by overlapping gene expression patterns. Thus, in the current study, we investigated the therapeutic effects of CPP and siRNA nanoparticles using in vitro models of benign endometriosis and malignant glioblastoma. We demonstrated that CPPs PepFect6 and NickFect70 are highly effective in transfecting cell lines, primary cell cultures, and three-dimensional spheroids. CPP nanoparticles are capable of inducing siRNA-specific knockdown of therapeutic genes, ribonucleotide reductase subunit M2 (RRM2), and vascular endothelial growth factor (VEGF), which results in the reduction of in vitro cellular proliferation, invasion, and migration. In addition, we proved that it is possible to achieve synergistic suppression of endometriosis cellular proliferation and invasion by combining gene therapy and hormonal treatment approaches by co-administering CPP/siRNA nanoparticles together with the endometriosis-drug danazol. We suggest a novel target, RRM2, for endometriosis therapy and as a proof-of-concept, we propose a CPP-mediated gene therapy approach for endometriosis and cancer.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4825-4825
Author(s):  
Xiaodan Luo ◽  
Lihua Xu ◽  
Dan Liu ◽  
Yaya Wang ◽  
Xiaohong Wu ◽  
...  

Abstract Backgroud: Special AT-rich sequence-binding protein-1 (SATB1) is critical for genome organizer that reprograms chromatin organization and transcription profiles, and associated with tumor growth and metastasis in several cancer types. Many studies suggest that SATB1 overexpression is an indicator of poor prognosis in various cancers, such as breast cancer, malignant cutaneous melanoma, liver cancer, etc. However, their expression patterns and function values for adult T-cell leukemia (ATL) are still largely unknown. Objective: The aim of this study is to examine the levels of SATB1 in ATL and to explore its function and mechanisms in ATL. METHODS: 20 ATL peripheral blood samples and 20 normal controls were collected. Expressions of SATB1 in both groups were evaluated by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Cellular proliferation and invasion of SATB1-knockdown Jurkat cells and cells in control group were evaluated by manually count and transwell matrigel invasion assay, respectively. RESULTS: SATB1 expressions were decreased in ATL peripheral blood mononuclear cells (p<0.001) compared with normal controls. Knockdown of SATB1 gene might increase Jurkat cell invasiveness through the activation of Wnt/β-Catenin signaling pathway. CONCLUSIONS: SATB1 expression is down-regulated in ATL and decreased expression of SATB1 increase the invasiveness of Jurkat cell through the activation of Wnt/β-Catenin signaling pathway in vitro. Acknowledgments This study was supported by grants from the National Natural Science Foundation of China (81200399) and Key Clinical Disciplines of Guangdong Province (20111219) Disclosures No relevant conflicts of interest to declare.


2012 ◽  
Vol 91 (12) ◽  
pp. 1147-1153 ◽  
Author(s):  
T. Ohira ◽  
D. Spear ◽  
N. Azimi ◽  
V. Andreeva ◽  
P.C. Yelick

Our long-term goal is to identify and characterize molecular mechanisms regulating tooth development, including those mediating the critical dental epithelial-dental mesenchymal (DE-DM) cell interactions required for normal tooth development. The goal of this study was to investigate Chemerin (Rarres2)/ChemR23(Cmklr1) signaling in DE-DM cell interactions in normal tooth development. Here we present, for the first time, tissue-specific expression patterns of Chemerin and ChemR23 in mouse tooth development. We show that Chemerin is expressed in cultured DE progenitor cells, while ChemR23 is expressed in cultured DM cells. Moreover, we demonstrate that ribosomal protein S6 (rS6) and Akt, downstream targets of Chemerin/ChemR23 signaling, are phosphorylated in response to Chemerin/ChemR23 signaling in vitro and are expressed in mouse tooth development. Together, these results suggest roles for Chemerin/ChemR23-mediated DE-DM cell signaling during tooth morphogenesis.


2008 ◽  
Vol 93 (5) ◽  
pp. 1865-1873 ◽  
Author(s):  
Daniel Kelberman ◽  
Sandra C. P. de Castro ◽  
Shuwen Huang ◽  
John A. Crolla ◽  
Rodger Palmer ◽  
...  

Abstract Context: Heterozygous, de novo mutations in the transcription factor SOX2 are associated with bilateral anophthalmia or severe microphthalmia and hypopituitarism. Variable additional abnormalities include defects of the corpus callosum and hippocampus. Objective: We have ascertained a further three patients with severe eye defects and pituitary abnormalities who were screened for mutations in SOX2. To provide further evidence of a direct role for SOX2 in hypothalamo-pituitary development, we have studied the expression of the gene in human embryonic tissues. Results: All three patients harbored heterozygous SOX2 mutations: a deletion encompassing the entire gene, an intragenic deletion (c.70_89del), and a novel nonsense mutation (p.Q61X) within the DNA binding domain that results in impaired transactivation. We also show that human SOX2 can inhibit β-catenin-driven reporter gene expression in vitro, whereas mutant SOX2 proteins are unable to repress efficiently this activity. Furthermore, we show that SOX2 is expressed throughout the human brain, including the developing hypothalamus, as well as Rathke’s pouch, the developing anterior pituitary, and the eye. Conclusions: Patients with SOX2 mutations often manifest the unusual phenotype of hypogonadotropic hypogonadism, with sparing of other pituitary hormones despite anterior pituitary hypoplasia. SOX2 expression patterns in human embryonic development support a direct involvement of the protein during development of tissues affected in these individuals. Given the critical role of Wnt-signaling in the development of most of these tissues, our data suggest that a failure to repress the Wnt-β-catenin pathway could be one of the underlying pathogenic mechanisms associated with loss-of-function mutations in SOX2.


2021 ◽  
Vol 8 ◽  
Author(s):  
Honghu Tang ◽  
Chunyu Tan ◽  
Xue Cao ◽  
Yi Liu ◽  
Hua Zhao ◽  
...  

Autophagy pathways play an important role in immunity and inflammation via pathogen clearance mechanisms mediated by immune cells, such as macrophages and neutrophils. In particular, autophagic activity is essential for the release of neutrophil extracellular traps (NETs), a distinct form of active neutrophil death. The current study set out to elucidate the mechanism of the NFIL3/REDD1/mTOR axis in neutrophil autophagy and NET formation during gout inflammation. Firstly, NFIL3 expression patterns were determined in the peripheral blood neutrophils of gout patients and monosodium urate (MSU)-treated neutrophils. Interactions between NFIL3 and REDD1 were identified. In addition, gain- or loss-of-function approaches were used to manipulate NFIL3 and REDD1 in both MSU-induced neutrophils and mice. The mechanism of NFIL3 in inflammation during gout was evaluated both in vivo and in vitro via measurement of cell autophagy, NET formation, MPO activity as well as levels of inflammatory factors. NFIL3 was highly-expressed in both peripheral blood neutrophils from gout patients and MSU-treated neutrophils. NFIL3 promoted the transcription of REDD1 by binding to its promoter. REDD1 augmented neutrophil autophagy and NET formation by inhibiting the mTOR pathway. In vivo experimental results further confirmed that silencing of NFIL3 reduced the inflammatory injury of acute gouty arthritis mice by inhibiting the neutrophil autophagy and NET formation, which was associated with down-regulation of REDD1 and activation of the mTOR pathway. Taken together, NFIL3 can aggravate the inflammatory reaction of gout by stimulating neutrophil autophagy and NET formation via REDD1/mTOR, highlighting NFIL3 as a potential therapeutic target for gout.


Development ◽  
1994 ◽  
Vol 120 (12) ◽  
pp. 3595-3603 ◽  
Author(s):  
C.V. Cabrera ◽  
M.C. Alonso ◽  
H. Huikeshoven

The pattern of adult sensilla in Drosophila is established by the dosage-sensitive interaction of two antagonistic groups of genes. Sensilla development is promoted by members of the achaete-scute complex and the daughterless gene whereas it is suppressed by whereas extramacrochaete (emc) and hairy. All these genes encode helix-loop-helix proteins. The products of the achaete-scute complex and daughterless interact to form heterodimers able to activate transcription. In this report, we show that (1) extra-macrochaete forms heterodimers with the achaete, scute, lethal of scute and daughterless products; (2) extramacrochaete inhibits DNA-binding of Achaete, Scute and Lethal of Scute/Daughterless heterodimers and Daughterless homodimers and (3) extramacrochaete inhibits transcription activation by heterodimers in a yeast assay system. In addition, we have studied the expression patterns of scute in wild-type and extramacrochaete mutant imaginal discs. Expression of scute RNA during imaginal development occurs in groups of cells, but high levels of protein accumulate in the nuclei of only a subset of the RNA-expressing cells. The pattern is dynamic and results in a small number of protein-containing cells that correspond to sensillum precursors. extramacrochaete loss-of-function alleles develop extra sensilla and correspondingly display a larger number of cells with scute protein. These cells appear to arise from those that in the wild type already express scute RNA; hence, extramacrochaete is a repressor of scute function whose action may take place post-transcriptionally.


Development ◽  
1997 ◽  
Vol 124 (3) ◽  
pp. 721-729 ◽  
Author(s):  
N. Core ◽  
S. Bel ◽  
S.J. Gaunt ◽  
M. Aurrand-Lions ◽  
J. Pearce ◽  
...  

In Drosophila, the trithorax-group and the Polycomb-group genes are necessary to maintain the expression of the homeobox genes in the appropriate segments. Loss-of-function mutations in those groups of genes lead to misexpression of the homeotic genes resulting in segmental homeotic transformations. Recently, mouse homologues of the Polycomb-group genes were identified including M33, the murine counterpart of Polycomb. In this report, M33 was targeted in mice by homologous recombination in embryonic stem (ES) cells to assess its function during development. Homozygous M33 (−/−) mice show greatly retarded growth, homeotic transformations of the axial skeleton, sternal and limb malformations and a failure to expand in vitro of several cell types including lymphocytes and fibroblasts. In addition, M33 null mutant mice show an aggravation of the skeletal malformations when treated to RA at embryonic day 7.5, leading to the hypothesis that, during development, the M33 gene might play a role in defining access to retinoic acid response elements localised in the regulatory regions of several Hox genes.


2004 ◽  
Vol 83 (9) ◽  
pp. 688-692 ◽  
Author(s):  
H. Yamamoto ◽  
S.-W. Cho ◽  
E.-J. Kim ◽  
J.-Y. Kim ◽  
N. Fujiwara ◽  
...  

Hertwig’s epithelial root sheath (HERS) plays an important role in tooth root formation. In this study, we examined root formation of the first molar in mice, focusing on cell proliferation, cell death, cell migration, and the expression patterns of the signaling molecules, including glycoproteins and proteoglycans between PN8 and PN26. The number of HERS cells decreased during root formation, although HERS retained total length until PN15. The migration of HERS cells did not occur during root formation. Moreover, the immunopositive reaction of laminin beta-3 and syndecan-1 in HERS indicates that both cell adhesion and cell proliferation are essential for HERS development. Bmp-2, Bmp-4, and Msx-2 were expressed in HERS cells during root formation. We also developed an in vitro culture system for investigating the periodontium and suggest that this system provides an excellent vehicle for full exploration, and hence improved understanding, of the development and regeneration of the periodontium. Together, our results provide a comprehensive model describing the morphogenesis of early root development in vertebrates.


2016 ◽  
Vol 113 (39) ◽  
pp. 11010-11015 ◽  
Author(s):  
Jun Zhang ◽  
Jinshan Ella Lin ◽  
Chinchu Harris ◽  
Fernanda Campos Mastrotti Pereira ◽  
Fan Wu ◽  
...  

Tight homeostatic regulation of the phytohormone auxin [indole-3-acetic acid (IAA)] is essential to plant growth. Auxin biosynthetic pathways and the processes that inactivate auxin by conjugation to amino acids and sugars have been thoroughly characterized. However, the enzyme that catalyzes oxidation of IAA to its primary catabolite 2-oxindole-3-acetic acid (oxIAA) remains uncharacterized. Here, we show that DIOXYGENASE FOR AUXIN OXIDATION 1 (DAO1) catalyzes formation of oxIAA in vitro and in vivo and that this mechanism regulates auxin homeostasis and plant growth. Null dao1-1 mutants contain 95% less oxIAA compared with wild type, and complementation of dao1 restores wild-type oxIAA levels, indicating that DAO1 is the primary IAA oxidase in seedlings. Furthermore, dao1 loss of function plants have altered morphology, including larger cotyledons, increased lateral root density, delayed sepal opening, elongated pistils, and reduced fertility in the primary inflorescence stem. These phenotypes are tightly correlated with DAO1 spatiotemporal expression patterns as shown by DAO1pro:β-glucuronidase (GUS) activity and DAO1pro:YFP-DAO1 signals, and transformation with DAO1pro:YFP-DAO1 complemented the mutant phenotypes. The dominant dao1-2D mutant has increased oxIAA levels and decreased stature with shorter leaves and inflorescence stems, thus supporting DAO1 IAA oxidase function in vivo. A second isoform, DAO2, is very weakly expressed in seedling root apices. Together, these data confirm that IAA oxidation by DAO1 is the principal auxin catabolic process in Arabidopsis and that localized IAA oxidation plays a role in plant morphogenesis.


1992 ◽  
Vol 71 (11) ◽  
pp. 1807-1811 ◽  
Author(s):  
W.G. Young ◽  
C.Z. Zhang ◽  
H. Li ◽  
P. Osborne ◽  
M.J. Waters

For investigation of how growth hormone affects tooth development, bromodeoxyuridine immunocytochemistry and morphometry were used for the study of cell proliferation in odontogenic epithelial cell layers. The number of cells in the S phase, as revealed by this technique, and in mitosis, were counted in Bouin's-perfused and paraffin-embedded undecalcified maxillary incisor enamel organs of normal rats, in growth-hormone-deficient dwarf rats, and in dwarf rats treated with growth hormone (66 μg/100 g body wt) twice daily for six days. Significantly fewer labeled nuclei, unlabeled nuclei, and total nuclei of various odontogenic epithelia were found in dwarf rats, but in dwarf rats treated with growth hormone, numbers of labeled nuclei equivalent to normal were found in the internal enamel epithelium, stratum intermedium, and Hertwig root sheath. Moreover, the mitotic index for pre-ameloblasts was 1.64 in normal rats, 0.92 for dwarf rats, and 1.66 for growth-hormone-treated dwarf rats (SD, 0.10). Other parameters-such as the labeling index and the ratio of positive to negative nuclei-were similarly related to GH status. Thus, growth hormone may play a role in the proliferation of the odontogenic epithelia in the rat.


Sign in / Sign up

Export Citation Format

Share Document