scholarly journals Research Progress of Cut-Resistant Textile Materials

2021 ◽  
Vol 9 ◽  
Author(s):  
Yanru Zhai ◽  
Lizhou Mao ◽  
Yue Shen ◽  
Xuefeng Yan

This article describes the physical properties, application fields and modification technologies of several commonly used cut-resistant textile raw materials and coating materials, and summarizes and compares and analyzes the current commonly used cut-resistant textile materials evaluation standards: EN420, EN388, ASTM F-1790, ISO13997. Finally, it is pointed out that lightness, softness and comfort are the future research and development directions of cut-resistant textiles. The article provides a preliminary reference for the application and modification of high-performance fibers and coating materials in cut-resistant textiles.

2019 ◽  
Vol 90 (5-6) ◽  
pp. 710-727 ◽  
Author(s):  
Yiwei Ouyang ◽  
Xianyan Wu

In order to review the most effective ways to improve the mechanical properties of composite T-beams and further increase their application potential, research progress on the mechanical properties of textile structural composite T-beams was summarized based on two-dimensional (2-D) ply structure composite T-beams, delamination resistance enhanced 2-D ply structure T-beams, and three-dimensional (3-D) textile structural composite T-beams; future research directions for composite T-beams were also considered. From existing literature, the research status and application bottlenecks of 2-D ply structure composite T-beams and T-beams with enhanced delamination resistance performance were described, as were the specific classification, research progress, and mechanical properties of 3-D textile structural composite T-beams. In addition, the superior mechanical properties of 3-D braided textile structural composite T-beams, specifically their application potential based on excellent delamination resistance capacity, were highlighted. Future research directions for composite T-beams, that is, the applications of high-performance raw materials, locally enhanced design, structural blending enhancement, functionality, and intelligence are presented in this review.


2017 ◽  
Vol 1 (3) ◽  
pp. 203
Author(s):  
Rohny S. Maail

This research objectives were to investigate possibility of using the waste of sago cortex (Ela sagu/Wa’a) in the manufacture of cement board and to determine the physical properties of cement board based on the comparison in proportion of materials (cement, sago, water)  and catalyst calcium chloride (CaCl2). Method were applied used completely randomesed design with tree replications in 3x3x3, with total 27 samples of cement board. The results shown that the waste of sago cortex ca be applied as raw materials to manufacture of cement board and fulfill the standard of particle board (JIS A 5908, 2003). The board have dencity which is almost equal to the target of dencity, lower value in water content, water absorption and thichness swelling so that have good performance in quality and stability dimensions. The sago cortex in side of base and the catalyst CaCl2 in 6% gave high performance for all physical properties of cement board.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1706 ◽  
Author(s):  
Hetang Wang ◽  
Yunhe Du ◽  
Deming Wang ◽  
Botao Qin

Safe mining is the premise and guarantee of sustainable development of coal energy. Due to the combination of excellent properties of polymers and traditional soft matters, polymer-containing soft matters are playing an increasingly important role in mine disaster and hazard control. To summarize the valuable work in recent years and provide reference and inspiration for researchers in this field, this paper reviewed the recent research progress in polymer-containing soft matters with respect to mine dust control, mine fire control, mine gas control and mine roadway support. From the perspective role of polymers in a material system, we classify mine polymer-containing soft matters into two categories. The first is polymer additive materials, in which polymers are used as additives to modify fluid-like soft matters, such as dust-reducing agents (surfactant solution) and dust-suppressing foams. The second is polymer-based materials, in which polymers are used as a main component to form high performance solid-like soft matters, such as fire prevention gels, foam gels, gas hole sealing material and resin anchorage agent. The preparation principle, properties and application of these soft matters are comprehensively reviewed. Furthermore, future research directions are also suggested.


2009 ◽  
Vol 405-406 ◽  
pp. 83-88 ◽  
Author(s):  
Gai Fei Peng ◽  
Zhan Qi Guo ◽  
Piet Stroeven ◽  
Ri Gao ◽  
Jiu Feng Zhang

A literature review was carried out to identify advances in research on workability of fresh concrete via both experimental tests and modeling, especially high performance concrete and self-compacting concrete. As to the relationship between fluidity of concrete and that of paste, future research can be conducted in two aspects, i.e. one is the influence of the quantity of paste in concrete, and another is the influence of fluidity of paste affected by a couple of factors. Most literature proved that the flow of concrete depends both on positive effect and negative effect, the former promote fluidity, such as dispersing, filling and lubricating, and the latter restricts fluidity, such as formation of particle coagulation, an increase of wettable surface of solid particles and mechanical interlock.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 4523-4543
Author(s):  
Ji Zhang ◽  
Junling Yang ◽  
Huafu Zhang ◽  
Zhentao Zhang ◽  
Yu Zhang

Due to the combined pressures of energy shortage and environmental degradation, bio-liquid fuels have been widely studied as a green, environmentally friendly, renewable petroleum alternative. This article summarizes the various technologies of three generations of biomass feedstocks (especially the second-generation, biomass lignin, and the third-generation, algae raw materials) used to convert liquid fuels (bioethanol, biodiesel, and bio-jet fuel) and analyzes their advantages and disadvantages. In addition, this article details the latest research progress in biomass liquid fuel production, summarizes the list of raw materials, products and conversion processes, and provides personal opinions on its future development. The aim is to provide a theoretical basis and reference for the optimization of existing technology and future research and development of biomass liquid fuels.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 419 ◽  
Author(s):  
Qi Zeng ◽  
Saisai Zhao ◽  
Hangao Yang ◽  
Yi Zhang ◽  
Tianzhun Wu

During the past decades, there have been leaps in the development of micro/nano retinal implant technologies, which is one of the emerging applications in neural interfaces to restore vision. However, higher feedthroughs within a limited space are needed for more complex electronic systems and precise neural modulations. Active implantable medical electronics are required to have good electrical and mechanical properties, such as being small, light, and biocompatible, and with low power consumption and minimal immunological reactions during long-term implantation. For this purpose, high-density implantable packaging and flexible microelectrode arrays (fMEAs) as well as high-performance coating materials for retinal stimulation are crucial to achieve high resolution. In this review, we mainly focus on the considerations of the high-feedthrough encapsulation of implantable biomedical components to prolong working life, and fMEAs for different implant sites to deliver electrical stimulation to targeted retinal neuron cells. In addition, the functional electrode materials to achieve superior stimulation efficiency are also reviewed. The existing challenge and future research directions of micro/nano technologies for retinal implant are briefly discussed at the end of the review.


2020 ◽  
Vol 86 (23) ◽  
Author(s):  
Li Wang ◽  
Guohui Li ◽  
Yu Deng

ABSTRACT Diamines are important monomers for polyamide plastics; they include 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, and 1,6-diaminohexane, among others. With increasing attention on environmental problems and green sustainable development, utilizing renewable raw materials for the synthesis of diamines is crucial for the establishment of a sustainable plastics industry. Recently, high-performance microbial factories, such as Escherichia coli and Corynebacterium glutamicum, have been widely used in the production of diamines. In particular, several synthetic pathways of 1,6-diaminohexane have been proposed based on glutamate or adipic acid. Here, we reviewed approaches for the biosynthesis of diamines, including metabolic engineering and biocatalysis, and the application of bio-based diamines in nylon materials. The related challenges and opportunities in the development of renewable bio-based diamines and nylon materials are also discussed.


Author(s):  
Ye Dai ◽  
Yu-Fei Gao ◽  
Wan-Jian Wen

Background: Space docking technology and space docking mechanism are an indispensable parts of modern complex spacecraft and important means to expand satellite functions in the future. However, there is still some technology to be broken through in the research of their buffer and locking, so that the docking mechanism can be better used in the future. Objectives: Through the introduction and discussion of the characteristics of space docking mechanism patents in recent years, some valuable conclusions are summarized, and the future research and development of space docking mechanism are prospected. Methods: This paper studied the patents of various docking mechanism, and summarized the patents and research progress of docking mechanism in space. Results: With the development of space industry, docking mechanism has become more and more important. So the docking mechanism are needed to achieve the replenishment for long-term spacecraft in orbit, personnel exchange, spacecraft maintenance, and so on. Conclusion: : By elaborating the structural characteristics of docking mechanism, the importance of docking mechanism are consulted for investigation. Through the comparison of these patents, it is concluded that weak impact docking mechanism and electromagnetic docking mechanism are the main development trends of docking institutions in the future.


Tekstilec ◽  
2021 ◽  
Vol 64 (1) ◽  
pp. 32-46
Author(s):  
Thomas Grethe ◽  

Biodegradable polymers are currently discussed for applications in different fields and are becoming of increasing interest in textile research. While a plethora of work has been done for PLA in medical textiles, other biodegradable polymers and their textile application fields are studied less often, presumably due to higher costs and fewer market opportunities. However, some are emerging from research to pilot scale, and are already utilized commercially in packaging and other sectors but not, unfortunately, in textiles. The commercialisation of such polymers is fuelled by improved biotechnological production processes, show¬ing that textile applications are increasingly conceivable for the future. Additionally, commonly accepted definitions for biodegradability are probably misleading, if they are used to estimate the environmental burden of waste management or recycling of such materials. In this review, the current state of research in the field of biodegradable polymers for the application in textile materials is presented to identify emerging developments for new textile applications. It was clearly seen that PLA is most dominant in that field, while others facilitate new options in the future. The production costs of raw materials and the current patent situation are also evaluated. A special focus is placed on fibre raw materials, coatings, and additives for clothing and technical textiles. Fibre-reinforced composites are excluded, since polymers applied for the matrix component require very different properties compared to the textile materials. This represents a topic to be discussed separately. As a result, these new biodegradable polymers might serve as interesting coating materials for textiles that seem to sneak on to the textile market, as the patent search for such coating formulations suggests. Moreover, new biodegradable fibrous materials for clothing applications can be suggested, but some material properties must be addressed to render them processable on common textile machines.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 440
Author(s):  
Yuanzhu Zhang ◽  
Runwei Wang ◽  
Zhi Ding

Crystalline admixtures (CAs) are new materials for promoting self-healing in concrete materials to repair concrete cracks. They have been applied to tunnel, reservoir dam, road, and bridge projects. The fundamental research and development of CAs are needed concerning their practical engineering applications. This paper reviews the current research progress of commercial CAs, including self-made CA healing cracks; the composition of CA; healing reaction mechanism; the composition of healing products; distribution characteristics of healing products; the influence of service environment and crack characteristics on the healing performance of CA; and coupling healing performance of CA with fiber, expansive agent, and superabsorbent polymers. The current research findings are summarized, and future research recommendations are provided to promote the development of high-performance cement matrix composites.


Sign in / Sign up

Export Citation Format

Share Document