scholarly journals Construction and Analysis of Immune Infiltration-Related ceRNA Network for Kidney Stones

2021 ◽  
Vol 12 ◽  
Author(s):  
Yuqi Xia ◽  
Xiangjun Zhou ◽  
Zehua Ye ◽  
Weimin Yu ◽  
Jinzhuo Ning ◽  
...  

Purpose: Kidney stones is a common medical issue that mediates kidney injury and even kidney function loss. However, the exact pathogenesis still remains unclear. This study aimed to explore the potential competing endogenous RNA (ceRNA)-related pathogenesis of kidney stones and identify the corresponding immune infiltration signature.Methods: One mRNA and one long non-coding RNA (lncRNA) microarray dataset was obtained from the GEO database. Subsequently, we compared differentially expressed mRNAs (DE-mRNAs) and lncRNAs between Randall’s plaques in patients with calcium oxalate (CaOx) stones and controls with normal papillary tissues. lncRNA-targeted miRNAs and miRNA–mRNA pairs were predicted using the online databases. lncRNA-related DE-mRNAs were identified using the Venn method, and GO and KEGG enrichment analyses were subsequently performed. The immune-related lncRNA–miRNA–mRNA ceRNA network was developed. The CIBERSORT algorithm was used to estimate the rate of immune cell infiltration in Randall’s plaques. The ceRNA network and immune infiltration were validated in the glyoxylate-induced hyperoxaluric mouse model and oxalate-treated HK-2 cells.Results: We identified 2,340 DE-mRNAs and 929 DE-lncRNAs between Randall’s plaques in patients with CaOx stones and controls with normal papillary tissues. lncRNA-related DE-mRNAs were significantly enriched in extracellular matrix organization and collagen-containing extracellular matrix, which were associated with kidney interstitial fibrosis. The immune-related ceRNA network included 10 lncRNAs, 23 miRNAs, and 20 mRNAs. Moreover, we found that M2 macrophages and resting mast cells were differentially expressed between Randall’s plaques and normal tissues. Throughout kidney stone development, kidney tubular injury, crystal deposition, collagen fiber deposition, TGF-β expression, infiltration of M1 macrophages, and activation of mast cells were more frequent in glyoxylate-induced hyperoxaluric mice compared with control mice. Nevertheless, M2 macrophage infiltration increased in early stages (day 6) and decreased as kidney stones progressed (day 12). Furthermore, treatment with 0.25 and 0.5 mM of oxalate for 48 h significantly upregulated NEAT1, PVT1, CCL7, and ROBO2 expression levels and downregulated hsa-miR-23b-3p, hsa-miR-429, and hsa-miR-139-5p expression levels in the HK-2 cell line in a dose-dependent manner.Conclusion: We found that significant expressions of ceRNAs (NEAT1, PVT1, hsa-miR-23b-3p, hsa-miR-429, hsa-miR-139-5p, CCL7, and ROBO2) and infiltrating immune cells (macrophages and mast cells) may be involved in kidney stone pathogenesis. These findings provide novel potential therapeutic targets for kidney stones.

2020 ◽  
Author(s):  
Jianxin Li ◽  
Ting Han ◽  
Xin Wang ◽  
Yinchun Wang ◽  
Qingqiang Yang

Abstract Background: Increasing studies have reported that long noncoding RNAs (lncRNAs) play critical roles in the initiation and progression of carcinogenesis. However, the underlying regulatory mechanisms of lncRNA related competing endogenous RNA (ceRNA) network in colorectal cancer (CRC) are not fully understood.Methods: Dysregulated microRNAs (miRNAs) in CRC samples were screened from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database. After that, the key miRNAs were filtered out through a comprehensive assessment of their expression levels and prognostic values. Subsequently, the targeted downstream mRNAs and upstream lncRNAs of the key miRNAs were predicted by using multiple bioinformatic databases. A ceRNA network was constructed by using Cytoscape, and the Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed on this network using the DAVID database. Ultimately, expression levels and prognostic values of the lncRNAs and mRNAs were evaluated, and a survival related ceRNA network was constructed and visualized by using Cytoscape. In addition, the Gene Set Enrichment Analysis (GSEA) software package was employed to identify the pathways in which this survival related ceRNA network was enriched. Furthermore, correlations of ceRNA network with immune infiltration level were estimated by the Tumor Immune Estimation Resource (TIMER) databases.Results: In total, 28 dysregulated miRNAs were obtained, and two of them were identified as key miRNAs based on expression levels and prognostic values analyses. Subsequently, a total of three upstream lncRNAs and 309 downstream mRNAs were predicted by using bioinformatic tools, and two key lncRNAs and eight key mRNAs were identified by expression and survival analysis. A ceRNA regulatory network associated with the prognosis of CRC patients was constructed. Furthermore, GSEA analysis indicated the possible association of key mRNAs with CRC onset and progression. Importantly, immune infiltration analysis revealed that the ceRNA network was remarkably associated with infiltration abundance of multiple immune cells and expression levels of immune checkpoints.Conclusions: We constructed a survival related ceRNA regulatory network in human CRC, NEAT1 and XIST are potential prognostic factors that affect CRC onset and progression by targeting miR-195-5p.


2020 ◽  
Vol 9 (3) ◽  
pp. 90-98 ◽  
Author(s):  
Haitao Chen ◽  
Liaobin Chen

Aims This study aimed to uncover the hub long non-coding RNAs (lncRNAs) differentially expressed in osteoarthritis (OA) cartilage using an integrated analysis of the competing endogenous RNA (ceRNA) network and co-expression network. Methods Expression profiles data of ten OA and ten normal tissues of human knee cartilage were obtained from the Gene Expression Omnibus (GEO) database (GSE114007). The differentially expressed messenger RNAs (DEmRNAs) and lncRNAs (DElncRNAs) were identified using the edgeR package. We integrated human microRNA (miRNA)-lncRNA/mRNA interactions with DElncRNA/DEmRNA expression profiles to construct a ceRNA network. Likewise, lncRNA and mRNA expression profiles were used to build a co-expression network with the WGCNA package. Potential hub lncRNAs were identified based on an integrated analysis of the ceRNA network and co-expression network. StarBase and Multi Experiment Matrix databases were used to verify the lncRNAs. Results We detected 1,212 DEmRNAs and 49 DElncRNAs in OA and normal knee cartilage. A total of 75 dysregulated lncRNA-miRNA interactions and 711 dysregulated miRNA-mRNA interactions were obtained in the ceRNA network, including ten DElncRNAs, 69 miRNAs, and 72 DEmRNAs. Similarly, 1,330 dysregulated lncRNA-mRNA interactions were used to construct the co-expression network, which included ten lncRNAs and 407 mRNAs. We finally identified seven hub lncRNAs, named MIR210HG, HCP5, LINC00313, LINC00654, LINC00839, TBC1D3P1-DHX40P1, and ISM1-AS1. Subsequent enrichment analysis elucidated that these lncRNAs regulated extracellular matrix organization and enriched in osteoclast differentiation, the FoxO signalling pathway, and the tumour necrosis factor (TNF) signalling pathway in the development of OA. Conclusion The integrated analysis of the ceRNA network and co-expression network identified seven hub lncRNAs associated with OA. These lncRNAs may regulate extracellular matrix changes and chondrocyte homeostasis in OA progress. Cite this article: Bone Joint Res. 2020;9(3):90–98.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yanbin Fu ◽  
Yanzhi Ge ◽  
Jianfeng Cao ◽  
Zedazhong Su ◽  
Danqing Yu

Background. Coronary heart disease (CHD) is the most prevalent disease with an unelucidated pathogenetic mechanism and is mediated by complex molecular interactions of exosomes. Here, we aimed to identify differentially expressed exosome genes for the disease development and prognosis of CHD. Method. Six CHD samples and 32 normal samples were downloaded from the exoRbase database to identify the candidate genes in the CHD. The differentially expressed genes (DEGs) were identified. And then, weighted gene correlation network analysis (WGCNA) was used to investigate the modules in coexpressed genes between CHD samples and normal samples. DEGs and the module of the WGCNA were intersected to obtain the most relevant exosome genes. After that, the function enrichment analyses and protein-protein interaction network (PPI) were performed for the particular module using STRING and Cytoscape software. Finally, the CIBERSORT algorithm was used to analyze the immune infiltration of exosome genes between CHD samples and normal samples. Result. We obtain a total of 715 overlapping exosome genes located at the intersection of the DEGs and key modules. The Gene Ontology enrichment of DEGs in the blue module included inflammatory response, neutrophil degranulation, and activation of CHD. In addition, protein-protein networks were constructed, and hub genes were identified, such as LYZ, CAMP, HP, ORM1, and LTF. The immune infiltration profiles varied significantly between normal controls and CHD. Finally, we found that mast cells activated and eosinophils had a positive correlation. B cell memory had a significant negative correlation with B cell naive. Besides, neutrophils and mast cells were significantly increased in CHD patients. Conclusion. The underlying mechanism may be related to neutrophil degranulation and the immune response. The hub genes and the difference in immune infiltration identified in the present study may provide new insights into the diagnostic and provide candidate targets for CHD.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Li Zhang ◽  
Shangshang Hu ◽  
Jiasheng Chen ◽  
Shasha Ma ◽  
Fanghong Liu ◽  
...  

AbstractA growing number of studies have shown that competitive endogenous RNA (ceRNA) regulatory networks might play important roles during the process of hepatocellular carcinoma (HCC). This study assessed the role of the ceRNA network in immune cell infiltration in HCC. Immune-related gene sets were downloaded from Molecular Signatures Database, and differentially expressed genes were screened based on TCGA HCC transcriptome data. The corresponding miRNAs with low expression and good prognostic implications, and the corresponding lncRNAs with high expression and poor prognostic were identified to construct ceRNA networks. The networks were utilized for clinical correlation analysis and risk model construction, and the CIBERSORT algorithm was applied to assess immune cell infiltration. In this study, the mRNA-miRNA-lncRNA model was used to construct a ceRNA network in HCC using immune-related differentially expressed mRNAs. Assessment of the MIR4435-2HG/hsa-miR-1-3p/MMP9/hsa-miR-29-3p/DUXAP8 ceRNA network axis in HCC showed that a high risk/poor prognosis was significantly correlated with tumor stage and invasion depth. MMP9 was positively correlated with resting M0 macrophages and NK cells and negatively correlated with activated mast cells, resting mast cells, monocytes and activated NK cells. DUXAP8 was positively correlated with M2 macrophages and negatively correlated with MIR4435-2HG, which was positively correlated with M2 macrophages and negatively correlated with activated mast cells, CD8 T cells and follicular helper T cells. The correlation of the MIR4435-2HG/hsa-miR-1-3p/MMP9/hsa-miR-29-3p/DUXAP8 ceRNA network axis with immune cell infiltration provides further information on the mechanism of HCC development. The result might improve our understanding the interactions between immune related genes and non-coding RNAs in the occurrence and development of HCC, and the relevant RNAs might be used as diagnostic and prognostic biomarkers and molecular targets in HCC patients.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinkun Han ◽  
Yajun Jing ◽  
Fubing Han ◽  
Peng Sun

Abstract Background Tissue inhibitors of metalloproteinase (TIMP) family proteins are peptidases involved in extracellular matrix (ECM) degradation. Various diseases are related to TIMPs, and the primary reason is that TIMPs can indirectly regulate remodelling of the ECM and cell signalling by regulating matrix metalloproteinase (MMP) activity. However, the link between TIMPs and glioblastoma (GBM) is unclear. Objective This study aimed to explore the role of TIMP expression and immune infiltration in GBM. Methods Oncomine, GEPIA, OSgbm, LinkedOmics, STRING, GeneMANIA, Enrichr, and TIMER were used to conduct differential expression, prognosis, and immune infiltration analyses of TIMPs in GBM. Results All members of the TIMP family had significantly higher expression levels in GBM. High TIMP3 expression correlated with better overall survival (OS) and disease-specific survival (DSS) in GBM patients. TIMP4 was associated with a long OS in GBM patients. We found a positive relationship between TIMP3 and TIMP4, identifying gene sets with similar or opposite expression directions to those in GBM patients. TIMPs and associated genes are mainly associated with extracellular matrix organization and involve proteoglycan pathways in cancer. The expression levels of TIMPs in GBM correlate with the infiltration of various immune cells, including CD4+ T cells, macrophages, neutrophils, B cells, CD8+ T cells, and dendritic cells. Conclusions Our study inspires new ideas for the role of TIMPs in GBM and provides new directions for multiple treatment modalities, including immunotherapy, in GBM.


2021 ◽  
Author(s):  
Lu Yang ◽  
Yan-hong Shou ◽  
Yong-sheng Yang ◽  
Jin-hua Xu

Abstract Background Acne vulgaris is a common inflammatory condition of skin. However, the landscape of immune infiltration in acne has not been entirely described. Objectives This study used a bioinformatics approach to investigate the inflammatory acne-related key biomarkers and signaling pathways, and immune infiltration in the acne lesion. Methods Two microarray datasets (GSE108110 and GSE53795) were downloaded from Gene Expression Omnibus. We used “limma” package from R software to identify the differentially expressed genes (DEGs) and perform the functional enrichment analyses. Then we built a protein-protein interaction network (PPI), performed the hub genes’ identification through STRING and Cytoscape. We applied the CIBERSORT algorithm to describe the immune infiltration in acne, and explored the correlation between biomarkers and immune infiltration. In the end, our findings in the study were verified by analyzing microarray dataset GSE6475. Results The differentially expressed genes (DEGs) including 292 upregulated genes and 150 downregulated genes in acne compared with non-lesional skin. The hub genes FPR1, C3AR1, CXCL1, CXCL8, FPR2, C3, CCR7, ITGB2 and pivotal pathways JAK-STAT signaling pathway, Toll-like receptor and NOD-like receptor signaling pathway were the most significantly associated with raising neutrophils, monocytes, activated mast cells, as well as reducing resting mast cells and Tregs. Conclusions Our study provides new insights into the pathogenesis and the targets which might be immunomodulatory potential for acne.


2022 ◽  
Author(s):  
Biyu Shen ◽  
Songsong Shi ◽  
Haoyang Chen ◽  
Yi Lu ◽  
Hengmei Cui ◽  
...  

Abstract Background and Objective: Fanconi anemia (FA) patients have a reduced ability to form blood cells, accompanied by multiple congenital malformations, mental retardation, solid tumors, and other symptoms. However, the molecular mechanism that causes FA is unclear, and few studies have addressed the regulatory mechanism of immune infiltration in FA. Here, we aimed to identify differentially expressed genes (DEGs), pathways, and immune infiltration involved in FA using integrated bioinformatics analysis and molecular mechanisms. Methods: The GEO gene chip database was searched for FA low density bone marrow tissue, and the content and proportion of 22 types of immune cells in the FA group and the normal group were analyzed using CIBERSORT. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of FA differentially expressed genes (DEGs) using R language and related package programs was also performed.Results: The expression levels of T cells regulatory (Tregs), M2 macrophages, T cells CD8, dendritic cells resting, and T cells CD4 naïve in FA were higher than in the normal group. Furthermore, the expression levels of naïve B cells, monocytes, and resting mast cells in FA were lower than in the normal group. GO analysis of FA differential genes showed that “neutrophil degranulation,” “neutrophil activation,” and “neutrophil activation involved in immune response,” were most frequently enriched among biological processes, with “specific granule,” “tertiary granule,” “tertiary granule lumen” among cellular components, and “carbohydrate binding” among molecular functions. For the KEGG analysis, “Asthma” was most often enriched.Conclusion: This study obtained useful data related to immune infiltration, DEGs, and gene pathways of FA, and provides new evidence for immunotherapy and clinical assessment of FA patients. These results are potentially a useful reference for subsequent related scientific research.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8390 ◽  
Author(s):  
Weisong Cai ◽  
Haohuan Li ◽  
Yubiao Zhang ◽  
Guangtao Han

Background Osteoarthritis (OA) is the most common chronic degenerative joint disease and is mainly characterized by cartilage degeneration, subcartilage bone hyperplasia, osteophyte formation and joint space stenosis. Recent studies showed that synovitis might also be an important pathological change of OA. However, the molecular mechanisms of synovitis in OA are still not well understood. Objective This study was designed to identify key biomarkers and immune infiltration in the synovial tissue of osteoarthritis by bioinformatics analysis. Materials and Methods The gene expression profiles of GSE12021, GSE55235 and GSE55457 were downloaded from the GEO database. The differentially expressed genes (DEGs) were identified by the LIMMA package in Bioconductor, and functional enrichment analyses were performed. A protein-protein interaction network (PPI) was constructed, and module analysis was performed using STRING and Cytoscape. The CIBERSORT algorithm was used to analyze the immune infiltration of synovial tissue between OA and normal controls. Results A total of 106 differentially expressed genes, including 68 downregulated genes and 38 upregulated genes, were detected. The PPI network was assessed, and the most significant module containing 14 hub genes was identified. Gene Ontology analysis revealed that the hub genes were significantly enriched in immune cell chemotaxis and cytokine activity. KEGG pathway analysis showed that the hub genes were significantly enriched in the rheumatoid arthritis signaling pathway, IL-17 signaling pathway and cytokine-cytokine receptor interaction signaling pathway. The immune infiltration profiles varied significantly between osteoarthritis and normal controls. Compared with normal tissue, OA synovial tissue contained a higher proportion of memory B cells, naive CD4+ T cells, regulatory T cells, resting dendritic cells and resting mast cells, while naive CD4+ T cells, activated NK cells, activated mast cells and eosinophils contributed to a relatively lower portion (P > 0.05). Finally, the expression levels of 11 hub genes were confirmed by RT-PCR. Conclusion The hub genes and the difference in immune infiltration in synovial tissue between osteoarthritis and normal controls might provide new insight for understanding OA development.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yang Xi ◽  
Zhuang Jing ◽  
Wu Wei ◽  
Zhang Chun ◽  
Qi Quan ◽  
...  

Abstract Background Sodium butyrate (NaB) is produced through the fermentation of dietary fiber that is not absorbed and digested by the small intestine. Purpose Here, we aimed to investigate the effects of NaB on the proliferation, invasion, and metastasis of CRC cells and their potential underlying molecular mechanism(s). Methods The cell counting kit-8 (CCK-8) assay and EdU assay were used to detect cell proliferation ability, flow cytometry was used to investigate the induction of apoptosis and cell cycle progression, and the scratch-wound healing and transwell assays were used to evaluate cell migration and invasion, respectively. The human CRC genome information for tissues and CRC cells treated with NaB obtained from the NCBI GEO database was reannotated and used for differential RNA analysis. Functional and pathway enrichment analyses were performed for differentially expressed lncRNAs and mRNAs. A protein-protein interaction (PPI) network for the hub genes was constructed using the Cytoscape software. Targeted miRNAs were predicted based on the lnCeDB database, and a ceRNA network was constructed using the Cytoscape software. The Kaplan-Meier method was used to analyze patient prognosis using the clinical information and exon-seq data for CRC obtained from the Broad Institute’s GDAC Firehose platform. Results NaB decreased the proliferation ability of CRC cells in a dose- and time-dependent manner. The number of apoptotic CRC cells increased with the increase in NaB concentrations, and NaB induced a G1 phase block in CRC cells. Moreover, NaB suppressed the migratory and invasive capabilities of CRC cells. There were 666 differentially expressed mRNAs and 30 differentially expressed lncRNAs involved in the CRC inhibition by NaB. The PPI network and ceRNA network were constructed based on the differentially expressed mRNAs and lncRNAs. Three differentially expressed mRNAs, including HMGA2, LOXL2, and ST7, were significantly correlated with the prognosis of CRC. Conclusion NaB induces the apoptosis and inhibition of CRC cell proliferation, invasion, and metastasis by modulating complex molecular networks. RNA prediction and molecular network construction need to be the focus of further research in this direction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenjie Chen ◽  
Wen Li ◽  
Zhenkun Liu ◽  
Guangzhi Ma ◽  
Yunfu Deng ◽  
...  

AbstractTo identify the prognostic biomarker of the competitive endogenous RNA (ceRNA) and explore the tumor infiltrating immune cells (TIICs) which might be the potential prognostic factors in lung adenocarcinoma. In addition, we also try to explain the crosstalk between the ceRNA and TIICs to explore the molecular mechanisms involved in lung adenocarcinoma. The transcriptome data of lung adenocarcinoma were obtained from The Cancer Genome Atlas (TCGA) database, and the hypergeometric correlation of the differently expressed miRNA-lncRNA and miRNA-mRNA were analyzed based on the starBase. In addition, the Kaplan–Meier survival and Cox regression model analysis were used to identify the prognostic ceRNA network and TIICs. Correlation analysis was performed to analysis the correlation between the ceRNA network and TIICs. In the differently expressed RNAs between tumor and normal tissue, a total of 190 miRNAs, 224 lncRNAs and 3024 mRNAs were detected, and the constructed ceRNA network contained 5 lncRNAs, 92 mRNAs and 10 miRNAs. Then, six prognostic RNAs (FKBP3, GPI, LOXL2, IL22RA1, GPR37, and has-miR-148a-3p) were viewed as the key members for constructing the prognostic prediction model in the ceRNA network, and three kinds of TIICs (Monocytes, Macrophages M1, activated mast cells) were identified to be significantly related with the prognosis in lung adenocarcinoma. Correlation analysis suggested that the FKBP3 was associated with Monocytes and Macrophages M1, and the GPI was obviously related with Monocytes and Macrophages M1. Besides, the LOXL2 was associated with Monocytes and Activated mast cells, and the IL22RA1 was significantly associated with Monocytes and Macrophages M1, while the GPR37 and Macrophages M1 was closely related. The constructed ceRNA network and identified Monocytes, Macrophages M1 and activated Mast cells are all prognostic factors for lung adenocarcinoma. Moreover, the crosstalk between the ceRNA network and TIICs might be a potential molecular mechanism involved.


Sign in / Sign up

Export Citation Format

Share Document