scholarly journals Immune Checkpoint LAG3 and Its Ligand FGL1 in Cancer

2022 ◽  
Vol 12 ◽  
Author(s):  
An-Ping Shi ◽  
Xi-Yang Tang ◽  
Yan-Lu Xiong ◽  
Kai-Fu Zheng ◽  
Yu-Jian Liu ◽  
...  

LAG3 is the most promising immune checkpoint next to PD-1 and CTLA-4. High LAG3 and FGL1 expression boosts tumor growth by inhibiting the immune microenvironment. This review comprises four sections presenting the structure/expression, interaction, biological effects, and clinical application of LAG3/FGL1. D1 and D2 of LAG3 and FD of FGL1 are the LAG3-FGL1 interaction domains. LAG3 accumulates on the surface of lymphocytes in various tumors, but is also found in the cytoplasm in non-small cell lung cancer (NSCLC) cells. FGL1 is found in the cytoplasm in NSCLC cells and on the surface of breast cancer cells. The LAG3-FGL1 interaction mechanism remains unclear, and the intracellular signals require elucidation. LAG3/FGL1 activity is associated with immune cell infiltration, proliferation, and secretion. Cytokine production is enhanced when LAG3/FGL1 are co-expressed with PD-1. IMP321 and relatlimab are promising monoclonal antibodies targeting LAG3 in melanoma. The clinical use of anti-FGL1 antibodies has not been reported. Finally, high FGL1 and LAG3 expression induces EGFR-TKI and gefitinib resistance, and anti-PD-1 therapy resistance, respectively. We present a comprehensive overview of the role of LAG3/FGL1 in cancer, suggesting novel anti-tumor therapy strategies.

Cancers ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 155 ◽  
Author(s):  
Martina Gatzka

Over the last decade, the treatment of tumor patients has been revolutionized by the highly successful introduction of novel targeted therapies, in particular small-molecule kinase inhibitors and monoclonal antibodies, as well as by immunotherapies. Depending on the mutational status, BRAF and MEK inhibitor combinations or immune checkpoint inhibitors are current first-line treatments for metastatic melanoma. However, despite great improvements of survival rates limitations due to tumor heterogeneity, primary and acquired therapy resistance, immune evasion, and economical considerations will need to be overcome. Accordingly, ongoing clinical trials explore the individualized use of small-molecule drugs in new targeted therapy combinations based on patient parameters and tumor biopsies. With focus on melanoma therapy this review aims at providing a comprehensive overview of such novel alternative and combinational therapy strategies currently emerging from basic research. The molecular principles and drug classes that may hold promise for improved tumor therapy combination regimens including kinase inhibition, induction of apoptosis, DNA-damage response inhibition, epigenetic reprogramming, telomerase inhibition, redox modulation, metabolic reprogramming, proteasome inhibition, cancer stem cell transdifferentiation, immune cell signaling modulation, and others, are explained in brief. In addition, relevant targeted therapy combinations in current clinical trials and individualized treatment strategies are highlighted.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1399
Author(s):  
Rushikesh S. Joshi ◽  
Samanvi S. Kanugula ◽  
Sweta Sudhir ◽  
Matheus P. Pereira ◽  
Saket Jain ◽  
...  

In the era of genomic medicine, cancer treatment has become more personalized as novel therapeutic targets and pathways are identified. Research over the past decade has shown the increasing importance of how the tumor microenvironment (TME) and the extracellular matrix (ECM), which is a major structural component of the TME, regulate oncogenic functions including tumor progression, metastasis, angiogenesis, therapy resistance, and immune cell modulation, amongst others. Within the TME, cancer-associated fibroblasts (CAFs) have been identified in several systemic cancers as critical regulators of the malignant cancer phenotype. This review of the literature comprehensively profiles the roles of CAFs implicated in gastrointestinal, endocrine, head and neck, skin, genitourinary, lung, and breast cancers. The ubiquitous presence of CAFs highlights their significance as modulators of cancer progression and has led to the subsequent characterization of potential therapeutic targets, which may help advance the cancer treatment paradigm to determine the next generation of cancer therapy. The aim of this review is to provide a detailed overview of the key roles that CAFs play in the scope of systemic disease, the mechanisms by which they enhance protumoral effects, and the primary CAF-related markers that may offer potential targets for novel therapeutics.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1135
Author(s):  
Kristin Entzian ◽  
Achim Aigner

Conventional cancer chemotherapies often exhibit insufficient therapeutic outcomes and dose-limiting toxicity. Therefore, there is a need for novel therapeutics and formulations with higher efficacy, improved safety, and more favorable toxicological profiles. This has promoted the development of nanomedicines, including systems for drug delivery, but also for imaging and diagnostics. Nanoparticles loaded with drugs can be designed to overcome several biological barriers to improving efficiency and reducing toxicity. In addition, stimuli-responsive nanocarriers are able to release their payload on demand at the tumor tissue site, preventing premature drug loss. This review focuses on ultrasound-triggered drug delivery by nanocarriers as a versatile, cost-efficient, non-invasive technique for improving tissue specificity and tissue penetration, and for achieving high drug concentrations at their intended site of action. It highlights aspects relevant for ultrasound-mediated drug delivery, including ultrasound parameters and resulting biological effects. Then, concepts in ultrasound-mediated drug delivery are introduced and a comprehensive overview of several types of nanoparticles used for this purpose is given. This includes an in-depth compilation of the literature on the various in vivo ultrasound-responsive drug delivery systems. Finally, toxicological and safety considerations regarding ultrasound-mediated drug delivery with nanocarriers are discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shaojun Zhang ◽  
Vivian Changying Jiang ◽  
Guangchun Han ◽  
Dapeng Hao ◽  
Junwei Lian ◽  
...  

AbstractThe mechanisms driving therapeutic resistance and poor outcomes of mantle cell lymphoma (MCL) are incompletely understood. We characterize the cellular and molecular heterogeneity within and across patients and delineate the dynamic evolution of tumor and immune cell compartments at single cell resolution in longitudinal specimens from ibrutinib-sensitive patients and non-responders. Temporal activation of multiple cancer hallmark pathways and acquisition of 17q are observed in a refractory MCL. Multi-platform validation is performed at genomic and cellular levels in PDX models and larger patient cohorts. We demonstrate that due to 17q gain, BIRC5/survivin expression is upregulated in resistant MCL tumor cells and targeting BIRC5 results in marked tumor inhibition in preclinical models. In addition, we discover notable differences in the tumor microenvironment including progressive dampening of CD8+ T cells and aberrant cell-to-cell communication networks in refractory MCLs. This study reveals diverse and dynamic tumor and immune programs underlying therapy resistance in MCL.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Crescenzo Massaro ◽  
Elham Safadeh ◽  
Giulia Sgueglia ◽  
Hendrik G. Stunnenberg ◽  
Lucia Altucci ◽  
...  

Despite substantial progress in cancer therapy, colorectal cancer (CRC) is still the third leading cause of cancer death worldwide, mainly due to the acquisition of resistance and disease recurrence in patients. Growing evidence indicates that deregulation of hormone signaling pathways and their cross-talk with other signaling cascades inside CRC cells may have an impact on therapy resistance. MicroRNAs (miRNAs) are small conserved non-coding RNAs thatfunction as negative regulators in many gene expression processes. Key studies have identified miRNA alterations in cancer progression and drug resistance. In this review, we provide a comprehensive overview and assessment of miRNAs role in hormone signaling pathways in CRC drug resistance and their potential as future targets for overcoming resistance to treatment.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A646-A646
Author(s):  
Elizabeth Stirling ◽  
Adam Wilson ◽  
Katherine Cook ◽  
Alexandra Thomas ◽  
Pierre Triozzi ◽  
...  

BackgroundTriple-negative breast cancer(TNBC) lacks druggable targets and has high metastatic incidence. Immune checkpoint blockades (ICB) are FDA approved for TNBC treatment, but therapeutic response and biomarkers are limited. CD47 is an integral membrane protein overexpressed on cancer cells that alters anti-tumor immunosurveillance, resulting in tumor progression. CD47 is involved in metabolic reprogramming but whether CD47 is a marker of progression and its role in ICB response for TNBC remains unknown.MethodsHuman TNBC biopsies were subjected to immunohistochemical analysis to determine CD47 role in TNBC progression. To determine CD47 impact on tumor burden, a carcinogen-induced TNBC model was performed in female wild type(WT) and cd47 null(cd47-/-) C57Bl/6 mice. To evaluate immune infiltrate signaling, tumors underwent spatial tissue proteomics by multiplexing photo-cleavable antibodies in Formalin-Fixed Paraffin-Embedded samples. An orthotopic EMT-6 murine TNBC model was performed to investigate tumor burden for CD47 monotherapy or in combination with anti-PD-L1 therapy.ResultsHuman matched primary, and metastatic TNBC biopsies increased immunoreactivity to CD47, signifying a potential therapeutic target(n=24). CD47 deficiency in the carcinogen-induced DMBA model decreased tumor incidence, weight, and area compared to WT(n=8/group,*p<0.003). Since CD47 can regulate metabolism, tumors underwent metabolomic analysis. Principal component analysis displayed differentially regulated metabolites between WT and cd47-/- tumors. Decreased carnitine conjugated fatty acids and ketone bodies were observed in cd47-/- tumors compared to WT, suggesting decreased fatty acid availability and/or metabolism(n=9/group,*p<0.05). TNBC cell respiratory measurements validated that targeting CD47 shifted metabolic dependency from fatty acid oxidation to glycolysis(n=3,*p<0.05). Kynurenine/tryptophan pathway metabolites, which catabolize Indoleamine-2,3-dioxygenase(IDO1) and involved in anti-PD-1/PD-L1 resistance, were decreased in cd47-/- tumors compared to WT(n=9/group,*p<0.05). Spatial proteomic analysis determined that cd47-/- tumors had elevated immune cell infiltration(CD45+, CD3+), suggesting CD47 absence enhances tumor immunogenicity and immune-mediated tumor ablation. Multiplexing of photo-cleavable antibodies increased protein expression of immune checkpoint molecules(PD-L1,VISTA,B7-H3,BatF3) and immunosuppressive cell types(CD11b+,Ly6c+) in WT tumors compared to cd47-/-, suggesting CD47 absence limits immunosuppressive signaling(n=16/group,*p<0.05). Since anti-PD-L1 therapies are approved to treat TNBC and WT tumors have PD-L1 upregulation, we examined how targeting CD47 would impact tumor burden of mice receiving anti-PD-L1 therapy. Targeting CD47 or PD-L1 as monotherapy decreased tumor burden; however, in combination it further reduced tumor burden compared to anti-PD-L1 treatment due to increased intratumoral granzyme B secreting cytotoxic T cells(n=4–8/group,*p<0.05).ConclusionsOur data indicates that CD47 may serve as a marker of anti-PD-L1 response, and targeting CD47 enhances immunogenicity and decreases immunosuppressive molecules, sensitizing TNBC tumors to anti-PD-L1 therapy to reduce tumor burden.AcknowledgementsDSP is supported by the NCI R21 (CA249349) and the American Cancer Society Research Scholar Grant (133727-RSG-19-150-01-LIB). ERS is supported by the NIAID Immunology and Pathogenesis T32 Training Grant (T32AI007401).Ethics ApprovalAnimal studies were approved by the Institutional Care and Use Committee, Wake Forest Health Sciences.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Elham Sajjadi ◽  
Konstantinos Venetis ◽  
Roberto Piciotti ◽  
Marco Invernizzi ◽  
Elena Guerini-Rocco ◽  
...  

AbstractThe clinical outcome of patients with a diagnosis of hormone receptor (HR)+ breast cancer has improved remarkably since the arrival of endocrine therapy. Yet, resistance to standard treatments is a major clinical challenge for breast cancer specialists and a life-threatening condition for the patients. In breast cancer, mismatch repair (MMR) status assessment has been demonstrated to be clinically relevant not only in terms of screening for inherited conditions such as Lynch syndrome, but also for prognostication, selection for immunotherapy, and early identification of therapy resistance. Peculiar traits characterize the MMR biology in HR+ breast cancers compared to other cancer types. In these tumors, MMR genetic alterations are relatively rare, occurring in ~3 % of cases. On the other hand, modifications at the protein level can be observed also in the absence of gene alterations and vice versa. In HR+ breast cancers, the prognostic role of MMR deficiency has been confirmed by several studies, but its predictive value remains a matter of controversy. The characterization of MMR status in these patients is troubled by the lack of tumor-specific guidelines and/or companion diagnostic tests. For this reason, precise identification of MMR-deficient breast cancers can be problematic. A deeper understanding of the MMR biology and clinical actionability in HR+ breast cancer may light the path to effective tumor-specific diagnostic tools. For a precise MMR status profiling, the specific strengths and limitations of the available technologies should be taken into consideration. This article aims at providing a comprehensive overview of the current state of knowledge of MMR alterations in HR+ breast cancer. The available armamentarium for MMR testing in these tumors is also examined along with possible strategies for a tailored pathological characterization.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pengxiang Yang ◽  
Yong Peng ◽  
Yuan Feng ◽  
Zhuoying Xu ◽  
Panfeng Feng ◽  
...  

Immune cell-derived extracellular vesicles (EVs) have increasingly become the focus of research due to their unique characteristics and bioinspired applications. They are lipid bilayer membrane nanosized vesicles harboring a range of immune cell-derived surface receptors and effector molecules from parental cells. Immune cell-derived EVs are important mediators of intercellular communication that regulate specific mechanisms of adaptive and innate immune responses. However, the mechanisms underlying the antitumor effects of EVs are still being explored. Importantly, immune cell-derived EVs have some unique features, including accessibility, storage, ability to pass through blood-brain and blood-tumor barriers, and loading of various effector molecules. Immune cell-derived EVs have been directly applied or engineered as potent antitumor vaccines or for the diagnosis of clinical diseases. More research applications involving genetic engineering, membrane engineering, and cargo delivery strategies have improved the treatment efficacy of EVs. Immune cell-derived EV-based therapies are expected to become a separate technique or to complement immunotherapy, radiotherapy, chemotherapy and other therapeutic modalities. This review aims to provide a comprehensive overview of the characteristics and functions of immune cell-derived EVs derived from adaptive (CD4+ T, CD8+ T and B cells) and innate immune cells (macrophages, NK cells, DCs, and neutrophils) and discuss emerging therapeutic opportunities and prospects in cancer treatment.


Author(s):  
Xuefei Liu ◽  
Ziwei Luo ◽  
Xuechen Ren ◽  
Zhihang Chen ◽  
Xiaoqiong Bao ◽  
...  

Background: Pancreatic ductal adenocarcinoma (PDAC) is dominated by an immunosuppressive microenvironment, which makes immune checkpoint blockade (ICB) often non-responsive. Understanding the mechanisms by which PDAC forms an immunosuppressive microenvironment is important for the development of new effective immunotherapy strategies.Methods: This study comprehensively evaluated the cell-cell communications between malignant cells and immune cells by integrative analyses of single-cell RNA sequencing data and bulk RNA sequencing data of PDAC. A Malignant-Immune cell crosstalk (MIT) score was constructed to predict survival and therapy response in PDAC patients. Immunological characteristics, enriched pathways, and mutations were evaluated in high- and low MIT groups.Results: We found that PDAC had high level of immune cell infiltrations, mainly were tumor-promoting immune cells. Frequent communication between malignant cells and tumor-promoting immune cells were observed. 15 ligand-receptor pairs between malignant cells and tumor-promoting immune cells were identified. We selected genes highly expressed on malignant cells to construct a Malignant-Immune Crosstalk (MIT) score. MIT score was positively correlated with tumor-promoting immune infiltrations. PDAC patients with high MIT score usually had a worse response to immune checkpoint blockade (ICB) immunotherapy.Conclusion: The ligand-receptor pairs identified in this study may provide potential targets for the development of new immunotherapy strategy. MIT score was established to measure tumor-promoting immunocyte infiltration. It can serve as a prognostic indicator for long-term survival of PDAC, and a predictor to ICB immunotherapy response.


Sign in / Sign up

Export Citation Format

Share Document