scholarly journals Insights Into the Prognostic Value and Immunological Role of NAAA in Pan-Cancer

2022 ◽  
Vol 12 ◽  
Author(s):  
Da Huang ◽  
Jiayu Shen ◽  
Lingyun Zhai ◽  
Huanhuan Chen ◽  
Jing Fei ◽  
...  

N-Acylethanolamine Acid Amidase (NAAA) is an N-terminal cysteine hydrolase and plays a vital physiological role in inflammatory response. However, the roles of NAAA in tumor immunity are still unclear. By using a series of bioinformatics approaches, we study combined data from different databases, including the Cancer Genome Atlas, the Cancer Cell Line Encyclopedia, Genotype Tissue-Expression, cBioPortal, Human Protein Atlas, TIMER, and ImmuCellAI to investigate the role of NAAA expression in prognosis and tumor immunity response. We would like to reveal the potential correlations between NAAA expression and gene alterations, tumor mutational burden (TMB), microsatellite instability (MSI), DNA methylation, tumor microenvironment (TME), immune infiltration levels, and various immune-related genes across different cancers. The results show that NAAA displayed abnormal expression within most malignant tumors, and overexpression of NAAA was associated with the poor prognosis of tumor patients. Through gene set enrichment analysis (GSEA), we found that NAAA was significantly associated with cell cycle and immune regulation-related signaling pathways, such as in innate immune system, adaptive immune system, neutrophil degranulation, and Toll-like receptor signaling pathways (TLRs). Further, the expression of NAAA was also confirmed to be correlated with tumor microenvironment and diverse infiltration of immune cells, especially tumor-associated macrophage (TAM). In addition to this, we found that NAAA is co-expressed with genes encoding major histocompatibility complex (MHC), immune activation, immune suppression, chemokine, and chemokine receptors. Meanwhile, we demonstrate that NAAA expression was correlated with TMB in 4 cancers and with MSI in 10 cancers. Our study reveals that NAAA plays an important role in tumorigenesis and cancer immunity, which may be used to function as a prognostic biomarker and potential target for cancer immunotherapy.

Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 429 ◽  
Author(s):  
Zou ◽  
Zheng ◽  
Deng ◽  
Yang ◽  
Xie ◽  
...  

Circular RNA CDR1as/ciRS-7 functions as an oncogenic regulator in various cancers. However, there has been a lack of systematic and comprehensive analysis to further elucidate its underlying role in cancer. In the current study, we firstly performed a bioinformatics analysis of CDR1as among 868 cancer samples by using RNA-seq datasets of the MiOncoCirc database. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), CIBERSORT, Estimating the Proportion of Immune and Cancer cells (EPIC), and the MAlignant Tumors using Expression data (ESTIMATE) algorithm were applied to investigate the underlying functions and pathways. Functional enrichment analysis suggested that CDR1as has roles associated with angiogenesis, extracellular matrix (ECM) organization, integrin binding, and collagen binding. Moreover, pathway analysis indicated that it may regulate the TGF-β signaling pathway and ECM-receptor interaction. Therefore, we used CIBERSORT, EPIC, and the ESTIMATE algorithm to investigate the association between CDR1as expression and the tumor microenvironment. Our data strongly suggest that CDR1as may play a specific role in immune and stromal cell infiltration in tumor tissue, especially those of CD8+ T cells, activated NK cells, M2 macrophages, cancer-associated fibroblasts (CAFs) and endothelial cells. Generally, systematic and comprehensive analyses of CDR1as were conducted to shed light on its underlying pro-cancerous mechanism. CDR1as regulates the TGF-β signaling pathway and ECM-receptor interaction to serve as a mediator in alteration of the tumor microenvironment.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Areeg Elmusrati ◽  
Justin Wang ◽  
Cun-Yu Wang

AbstractHead and neck squamous cell carcinoma (HNSCC), an aggressive malignancy, is characterized by high morbidity and low survival rates with limited therapeutic options outside of regional surgery, conventional cytotoxic chemotherapy, and irradiation. Increasing studies have supported the synergistic role of the tumor microenvironment (TME) in cancer advancement. The immune system, in particular, plays a key role in surveillance against the initiation, development, and progression of HNSCC. The understanding of how neoplastic cells evolve and evade the immune system whether through self-immunogenicity manipulation, or expression of immunosuppressive mediators, provides the foundation for the development of advanced therapies. Furthermore, the crosstalk between cancer cells and the host immune system have a detrimental effect on the TME promoting angiogenesis, proliferation, and metastasis. This review provides a recent insight into the role of the key inflammatory cells infiltrating the TME, with a focus on reviewing immunological principles related to HNSCC, as cancer immunosurveillance and immune escape, including a brief overview of current immunotherapeutic strategies and ongoing clinical trials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yangming Hou ◽  
Yingjuan Xu ◽  
Dequan Wu

AbstractThe infiltration degree of immune and stromal cells has been shown clinically significant in tumor microenvironment (TME). However, the utility of stromal and immune components in Gastric cancer (GC) has not been investigated in detail. In the present study, ESTIMATE and CIBERSORT algorithms were applied to calculate the immune/stromal scores and the proportion of tumor-infiltrating immune cell (TIC) in GC cohort, including 415 cases from The Cancer Genome Atlas (TCGA) database. The differentially expressed genes (DEGs) were screened by Cox proportional hazard regression analysis and protein–protein interaction (PPI) network construction. Then ADAMTS12 was regarded as one of the most predictive factors. Further analysis showed that ADAMTS12 expression was significantly higher in tumor samples and correlated with poor prognosis. Gene Set Enrichment Analysis (GSEA) indicated that in high ADAMTS12 expression group gene sets were mainly enriched in cancer and immune-related activities. In the low ADAMTS12 expression group, the genes were enriched in the oxidative phosphorylation pathway. CIBERSORT analysis for the proportion of TICs revealed that ADAMTS12 expression was positively correlated with Macrophages M0/M1/M2 and negatively correlated with T cells follicular helper. Therefore, ADAMTS12 might be a tumor promoter and responsible for TME status and tumor energy metabolic conversion.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengguo Wu ◽  
Shang Li ◽  
Xiao Zhu

Cancer immunotherapy is a kind of therapy that can control and eliminate tumors by restarting and maintaining the tumor-immune cycle and restoring the body’s normal anti-tumor immune response. Although immunotherapy has great potential, it is currently only applicable to patients with certain types of tumors, such as melanoma, lung cancer, and cancer with high mutation load and microsatellite instability, and even in these types of tumors, immunotherapy is not effective for all patients. In order to enhance the effectiveness of tumor immunotherapy, this article reviews the research progress of tumor microenvironment immunotherapy, and studies the mechanism of stimulating and mobilizing immune system to enhance anti-tumor immunity. In this review, we focused on immunotherapy against tumor microenvironment (TME) and discussed the important research progress. TME is the environment for the survival and development of tumor cells, which is composed of cell components and non-cell components; immunotherapy for TME by stimulating or mobilizing the immune system of the body, enhancing the anti-tumor immunity. The checkpoint inhibitors can effectively block the inhibitory immunoregulation, indirectly strengthen the anti-tumor immune response and improve the effect of immunotherapy. We also found the checkpoint inhibitors have brought great changes to the treatment model of advanced tumors, but the clinical treatment results show great individual differences. Based on the close attention to the future development trend of immunotherapy, this study summarized the latest progress of immunotherapy and pointed out a new direction. To study the mechanism of stimulating and mobilizing the immune system to enhance anti-tumor immunity can provide new opportunities for cancer treatment, expand the clinical application scope and effective population of cancer immunotherapy, and improve the survival rate of cancer patients.


2021 ◽  
Vol 22 (17) ◽  
pp. 9460
Author(s):  
Helmut Segner ◽  
Christyn Bailey ◽  
Carolina Tafalla ◽  
Jun Bo

The impact of anthropogenic contaminants on the immune system of fishes is an issue of growing concern. An important xenobiotic receptor that mediates effects of chemicals, such as halogenated aromatic hydrocarbons (HAHs) and polyaromatic hydrocarbons (PAHs), is the aryl hydrocarbon receptor (AhR). Fish toxicological research has focused on the role of this receptor in xenobiotic biotransformation as well as in causing developmental, cardiac, and reproductive toxicity. However, biomedical research has unraveled an important physiological role of the AhR in the immune system, what suggests that this receptor could be involved in immunotoxic effects of environmental contaminants. The aims of the present review are to critically discuss the available knowledge on (i) the expression and possible function of the AhR in the immune systems of teleost fishes; and (ii) the impact of AhR-activating xenobiotics on the immune systems of fish at the levels of immune gene expression, immune cell proliferation and immune cell function, immune pathology, and resistance to infectious disease. The existing information indicates that the AhR is expressed in the fish immune system, but currently, we have little understanding of its physiological role. Exposure to AhR-activating contaminants results in the modulation of numerous immune structural and functional parameters of fish. Despite the diversity of fish species studied and the experimental conditions investigated, the published findings rather uniformly point to immunosuppressive actions of xenobiotic AhR ligands in fish. These effects are often associated with increased disease susceptibility. The fact that fish populations from HAH- and PAH-contaminated environments suffer immune disturbances and elevated disease susceptibility highlights that the immunotoxic effects of AhR-activating xenobiotics bear environmental relevance.


2020 ◽  
Author(s):  
Mohamed Elshaer ◽  
Ahmed Hammad ◽  
Xiu Jun Wang ◽  
Xiuwen Tang

Abstract BackgroundKEAP1-NRF2 pathway alterations were identified in many cancers including, esophageal cancer (ESCA). Identifying biomarkers that are associated with mutations in this pathway will aid in defining this cancer subset; and hence in supporting precision and personalized medicine. MethodsIn this study, 182 tumor samples from the Cancer Genome Atlas (TCGA)-ESCA RNA-Seq V2 level 3 data were segregated into two groups KEAP1-NRF2-mutated (22) and wild-type (160).The two groups were subjected to differential gene expression analysis, and we performed Gene Set Enrichment Analysis (GSEA) to determine all significantly affected biological pathways. Then, the enriched gene set was integrated with the differentially expressed genes (DEGs) to identify a gene signature regulated by the KEAP1-NRF2 pathway in ESCA. Furthermore, we validated the gene signature using mRNA expression data of ESCA cell lines provided by the Cancer Cell Line Encyclopedia (CCLE). The identified signature was tested in 3 independent ESCA datasets to assess its prognostic value.ResultsWe identified 11 epithelial-mesenchymal transition (EMT) genes regulated by the KEAP1-NRF2 pathway in ESCA patients. Five of the 11 genes showed significant over-expression in KEAP1-NRF2-mutated ESCA cell lines. In addition, the over-expression of these five genes was significantly associated with poor survival in 3 independent ESCA datasets, including the TCGA-ESCA dataset.ConclusionAltogether, we identified a novel EMT 5-gene signature regulated by the KEAP1-NRF2 axis and this signature is strongly associated with metastasis and drug resistance in ESCA. These 5-genes are potential biomarkers and therapeutic targets for ESCA patients in whom the KEAP1-NRF2 pathway is altered.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Wenjin Zheng ◽  
Qing Xu ◽  
Yiyuan Zhang ◽  
Xiaofei E ◽  
Wei Gao ◽  
...  

Abstract Background In the past decades, researchers have demonstrated the critical role of Toll-like receptors (TLRs) in the innate immune system. They recognize viral components and trigger immune signal cascades to subsequently promote the activation of the immune system. Main body Herpesviridae family members trigger TLRs to elicit cytokines in the process of infection to activate antiviral innate immune responses in host cells. This review aims to clarify the role of TLRs in the innate immunity defense against herpesviridae, and systematically describes the processes of TLR actions and herpesviridae recognition as well as the signal transduction pathways involved. Conclusions Future studies of the interactions between TLRs and herpesviridae infections, especially the subsequent signaling pathways, will not only contribute to the planning of effective antiviral therapies but also provide new molecular targets for the development of antiviral drugs.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Zhenfeng Deng ◽  
Jilong Wang ◽  
Banghao Xu ◽  
Zongrui Jin ◽  
Guolin Wu ◽  
...  

Hepatocellular carcinoma (HCC) is one of the most common and lethal malignancies. Recent studies reveal that tumor microenvironment (TME) components significantly affect HCC growth and progression, particularly the infiltrating stromal and immune cells. Thus, mining of TME-related biomarkers is crucial to improve the survival of patients with HCC. Public access of The Cancer Genome Atlas (TCGA) database allows convenient performance of gene expression-based analysis of big data, which contributes to the exploration of potential association between genes and prognosis of a variety of malignancies, including HCC. The “Estimation of STromal and Immune cells in MAlignant Tumors using Expression data” algorithm renders the quantification of the stromal and immune components in TME possible by calculating the stromal and immune scores. Differentially expressed genes (DEGs) were screened by dividing the HCC cohort of TCGA database into high- and low-score groups according to stromal and immune scores. Further analyses of functional enrichment and protein-protein interaction networks show that the DEGs are mainly involved in immune response, cell adhesion, and extracellular matrix. Finally, seven DEGs have significant association with HCC poor outcomes. These genes contain FABP3, GALNT5, GPR84, ITGB6, MYEOV, PLEKHS1, and STRA6 and may be candidate biomarkers for HCC prognosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaolin Yu ◽  
Xiaomei Zhang ◽  
Yanxia Zhang

Lung adenocarcinoma (LUAD) is a common subtype of lung cancer with a depressing survival rate. The reprogramming of tumor metabolism was identified as a new hallmark of cancer in tumor microenvironment (TME), and we made a comprehensive exploration to reveal the prognostic role of the metabolic-related genes. Transcriptome profiling data of LUAD were, respectively, downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Based on the extracted metabolic-related genes, a novel 5-gene metabolic prognostic signature (including GNPNAT1, LPGAT1, TYMS, LDHA, and PTGES) was constructed by univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression. This signature confirmed its robustness and accuracy by external validation in multiple databases. It could be an independent risk factor for LUAD, and the nomograms possessed moderately accurate performance with the C-index of 0.755 (95% confidence interval: 0.706–0.804) and 0.691 (95% confidence interval: 0.636–0.746) in training set and testing set. This signature could reveal the metabolic features according to the results of gene set enrichment analysis (GSEA) and meanwhile monitor the status of TME through ESTIMATE scores and the infiltration levels of immune cells. In conclusion, this gene signature is a cost-effective tool which could indicate the status of TME to provide more clues in the exploration of new diagnostic and therapeutic strategy.


2016 ◽  
Vol 62 (1) ◽  
pp. 72-77 ◽  
Author(s):  
Rita de Cássia Pereira da Costa e Silva ◽  
Kátia Karina Verolli de Oliveira Moura ◽  
Circoncisto Laurentino Ribeiro Júnior ◽  
Lidia Andreu Guillo

SUMMARY Even though the physiological role of estrogen in the female reproductive cycle and endometrial proliferative phase is well established, the signaling pathways by which estrogen exerts its action in the endometrial tissue are still little known. In this regard, advancements in cell culture techniques and maintenance of endometrial cells in cultures enabled the discovery of new signaling mechanisms activated by estrogen in the normal endometrium and in endometriosis. This review aims to present the recent findings in the genomic and non-genomic estrogen signaling pathways in the proliferative human endometrium specifically associated with the pathogenesis and development of endometriosis.


Sign in / Sign up

Export Citation Format

Share Document