scholarly journals Probiotics Bacillus licheniformis Improves Intestinal Health of Subclinical Necrotic Enteritis-Challenged Broilers

2021 ◽  
Vol 12 ◽  
Author(s):  
Liugang Kan ◽  
Fangshen Guo ◽  
Yan Liu ◽  
Van Hieu Pham ◽  
Yuming Guo ◽  
...  

Necrotic enteritis infection poses a serious threat to poultry production, and there is an urgent need for searching effective antibiotic alternatives to control it with the global ban on in-feed antibiotics. This study was conducted to investigate the effects of dietary Bacillus licheniformis replacing enramycin on the growth performance and intestinal health of subclinical necrotic enteritis (SNE)-challenged broilers. In total, 504 1-day-old Arbor Acres male chickens were selected and subsequently assigned into three treatments, including PC (basal diet + SNE challenge), PA (basal diet extra 10 mg/kg enramycin + SNE challenge), and PG (basal diet extra 3.20 × 109 and 1.60 × 109 CFU B. licheniformis per kg diet during 1–21 days and 22–42 days, respectively + SNE challenge). Results showed that B. licheniformis significantly decreased the intestinal lesion scores and down-regulated the Claudin-3 mRNA levels in jejunum of SNE-infected broilers on day 25, but increased the mucin-2 gene expression in broilers on day 42. In addition, B. licheniformis significantly up-regulated the mRNA levels of TRIF and NF-κB of SNE-challenged broilers compared with the control group on day 25 and TLR-4, TRIF compared with the control and the antibiotic group on day 42. The mRNA expression of growth factors (GLP-2 and TGF-β2) and HSPs (HSP60, HSP70, and HSP90) were up-regulated in B. licheniformis supplementary group on days 25 and 42 compared with group PC. LEfSe analysis showed that the relative abundance of Lachnospiraceae_UCG_010 was enriched in the PG group; nevertheless, Clostridiales_vadinBB60 and Rnminococcaceae_NK4A214 were in PA. PICRUSt analysis found that the metabolism of cofactors and vitamins, amino acid metabolism, and carbohydrate metabolism pathways were enriched, whereas energy metabolism, membrane transport, cell motility, and lipid metabolism were suppressed in B. licheniformis-supplemented groups as compared with the PC control. In conclusion, dietary supplementation of B. licheniformis alleviated the intestinal damage caused by SNE challenge that coincided with modulating intestinal microflora structure and barrier function as well as regulating intestinal mucosal immune responses.

2020 ◽  
Author(s):  
Tiande Zou ◽  
Jin Yang ◽  
Xiaobo Guo ◽  
Qin He ◽  
Zirui Wang ◽  
...  

Abstract Background: Seaweed-derived polysaccharides (SDP) represent an attractive source of prebiotic nutraceuticals for the food and animal husbandry industry. However, the mechanism by which SDP from Enteromorpha mediates pig growth are not fully understood. This study aimed to investigate how SDP supplementation influences the growth performance and intestinal health in weaned pigs.Results: In Exp. 1, 240 weaned pigs were randomly assigned to four dietary treatments and fed with a basal diet or a basal diet containing 200, 400 or 800 mg/kg SDP, respectively, in a 21-d trial. Pigs on the 400 or 800 mg/kg SDP-supplemented group had greater ADG and lower F/G ratio than those on the control group (P<0.05). In Exp. 2, 20 male weaned pigs were randomly assigned to two treatments and fed with a basal diet (CON group) or a basal diet supplemented with 400 mg/kg SDP (the optimum does from Exp. 1), in a 21-d trial. Pigs fed the SDP diet had greater ADG, the concentrations of serum IL-6 and TNF-α and the activities of glutathione peroxidase, superoxide dismutase and catalase (P<0.05), and lower F/G, diarrhea rate, as well as serum D-lactate concentrations and diamine oxidase activity (P<0.05). Moreover, dietary SDP supplementation enhanced secretory immunoglobulin A content, villus height and villous height: crypt depth ratio in small intestine, as well as the lactase and maltase activities in jejunum mucosa (P<0.05). SDP supplementation elevated the mRNA levels of inflammatory response-related genes (IL-6, TNF-α, TLR4, TLR6 and MyD88), and the mRNA and protein levels of ZO-1, Claudin-1 and Occludin in jejunum mucosa (P<0.05). Importantly, SDP not only increased the Lactobacillus population but also reduced the Escherichia coli population in cecum (P<0.05). Furthermore, SDP increased acetic acid and butyric acid concentrations in cecum (P<0.05).Conclusions: These results not only suggest a beneficial effect of SDP on growth performance and intestinal barrier functions, but also offer potential mechanisms behind SDP-facilitated intestinal health in weaned pigs.


Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 663 ◽  
Author(s):  
Xi-Chun Wang ◽  
Ya-Fei Zhang ◽  
Li Cao ◽  
Lei Zhu ◽  
Ying-Ying Huang ◽  
...  

Deoxynivalenol (DON) is highly toxic to animals and humans, but pigs are most sensitive to it. The porcine mucosal injury related mechanism of DON is not yet fully clarified. Here, we investigated DON-induced injury in the intestinal tissues of piglet. Thirty weanling piglets [(Duroc × Landrace) × Yorkshire] were randomly divided into three groups according to single factor experimental design (10 piglets each group). Piglets were fed a basal diet in the control group, while low and high dose groups were fed a DON diet (1300 and 2200 μg/kg, respectively) for 60 days. Scanning electron microscopy results indicated that the ultrastructure of intestinal epithelial cells in the DON-treated group was damaged. The distribution and optical density (OD) values of zonula occludens 1 (ZO-1) protein in the intestinal tissues of DON-treated groups were decreased. At higher DON dosage, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α mRNA levels were elevated in the intestinal tissues. The mRNA and protein levels of NF-κB p65, IκB-α, IKKα/β, iNOS, and COX-2 in the small intestinal mucosa were abnormally altered with an increase in DON concentration. These results indicate that DON can persuade intestinal damage and inflammatory responses in piglets via the nuclear factor-κB signaling pathway.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tiande Zou ◽  
Jin Yang ◽  
Xiaobo Guo ◽  
Qin He ◽  
Zirui Wang ◽  
...  

Abstract Background Seaweed-derived polysaccharides (SDP) represent an attractive source of prebiotic nutraceuticals for the food and animal husbandry industry. However, the mechanism by which SDP from Enteromorpha mediates pig growth are not fully understood. This study aimed to investigate how SDP supplementation influences the growth performance and intestinal health in weaned pigs. Results In Exp. 1, 240 weaned pigs were randomly assigned to four dietary treatments and fed with a basal diet or a basal diet containing 200, 400 or 800 mg/kg SDP, respectively, in a 21-day trial. Pigs on the 400 or 800 mg/kg SDP-supplemented group had greater ADG and lower F/G ratio than those on the control group (P<0.05). In Exp. 2, 20 male weaned pigs were randomly assigned to two treatments and fed with a basal diet (CON group) or a basal diet supplemented with 400 mg/kg SDP (the optimum does from Exp. 1), in a 21-day trial. Pigs fed the SDP diet had greater ADG, the concentrations of serum IL-6 and TNF-α and the activities of glutathione peroxidase, superoxide dismutase and catalase (P<0.05), and lower F/G, diarrhea rate, as well as serum D-lactate concentrations and diamine oxidase activity (P<0.05). Moreover, dietary SDP supplementation enhanced secretory immunoglobulin A content, villus height and villous height: crypt depth ratio in small intestine, as well as the lactase and maltase activities in jejunum mucosa (P<0.05). SDP supplementation elevated the mRNA levels of inflammatory response-related genes (IL-6, TNF-α, TLR4, TLR6 and MyD88), and the mRNA and protein levels of ZO-1, claudin-1 and occludin in jejunum mucosa (P<0.05). Importantly, SDP not only increased the Lactobacillus population but also reduced the Escherichia coli population in cecum (P<0.05). Furthermore, SDP increased acetic acid and butyric acid concentrations in cecum (P<0.05). Conclusions These results not only suggest a beneficial effect of SDP on growth performance and intestinal barrier functions, but also offer potential mechanisms behind SDP-facilitated intestinal health in weaned pigs.


2020 ◽  
Author(s):  
Tiande Zou ◽  
Jin Yang ◽  
Xiaobo Guo ◽  
Qin He ◽  
Zirui Wang ◽  
...  

Abstract Background: Seaweed-derived polysaccharides (SDP) represent an attractive source of prebiotic nutraceuticals for the food and animal husbandry industry. However, the mechanism by which SDP from Enteromorpha mediates pig growth are not fully understood. This study aimed to investigate how SDP supplementation influences the growth performance and intestinal health in weaned pigs.Results: In Exp. 1, 240 weaned pigs were randomly assigned to four dietary treatments and fed with a basal diet or a basal diet containing 200, 400 or 800 mg/kg SDP, respectively, in a 21-d trial. Pigs on the 400 or 800 mg/kg SDP-supplemented group had greater ADG and lower F/G ratio than those on the control group (P<0.05). In Exp. 2, 20 male weaned pigs were randomly assigned to two treatments and fed with a basal diet (CON group) or a basal diet supplemented with 400 mg/kg SDP (the optimum does from Exp. 1), in a 21-d trial. Pigs fed the SDP diet had greater ADG, the concentrations of serum IL-6 and TNF-α and the activities of glutathione peroxidase, superoxide dismutase and catalase (P<0.05), and lower F/G, diarrhea rate, as well as serum D-lactate concentrations and diamine oxidase activity (P<0.05). Moreover, dietary SDP supplementation enhanced secretory immunoglobulin A content, villus height and villous height: crypt depth ratio in small intestine, as well as the lactase and maltase activities in jejunum mucosa (P<0.05). SDP supplementation elevated the mRNA levels of inflammatory response-related genes (IL-6, TNF-α, TLR4, TLR6 and MyD88), and the mRNA and protein levels of ZO-1, Claudin-1 and Occludin in jejunum mucosa (P<0.05). Importantly, SDP not only increased the Lactobacillus population but also reduced the Escherichia coli population in cecum (P<0.05). Furthermore, SDP increased acetic acid and butyric acid concentrations in cecum (P<0.05). Conclusions: These results not only suggest a beneficial effect of SDP on growth performance and intestinal barrier functions, but also offer potential mechanisms behind SDP-facilitated intestinal health in weaned pigs.


Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Xiaolu Jin ◽  
Guanggen Huang ◽  
Zheng Luo ◽  
Yongfei Hu ◽  
Dan Liu

Oregano (Origanum vulgare L.) is a well-known traditional medicine and a cooking spice. Recent practice has also applied the essential oil from oregano (OEO) in poultry due to its great potential for an antibiotic alternative. Our objective was to evaluate the potential effects of OEO (with carvacrol and thymol as the main active ingredient) on preventing necrotic enteritis (NE) caused by Clostridium perfringens (Cp) in chickens. In the feeding trial, a total of 450 one-day-old commercial Arbor Acres broilers were randomly assigned in 5 experimental groups during a 26-day production period (d19 to d 26 was the Cp challenge stage), and each group consisted of 6 replicate pens (15 birds each pen). All treatments were: basal diet (control group); basal diet and Cp challenge (model group); Cp challenge and 10 mg/kg enramycin (positive control group); Cp challenge and 200 mg/kg OEO product (OEO low dosage group, OEOL); Cp challenge and 300 mg/kg OEO product (OEO high dosage group, OEOH). OEO feed supplement at both dosages had significant effects on increasing the body weight gain (BWG) and reversing the dropped feed intake (FI) induced by Cp challenge. Histopathological changes in the ileums of broiler chickens with NE induced by Cp were alleviated by OEO, which was mutually confirmed by the intestinal lesion scores. Dosage did not influence the protective effect of OEO on intestinal lesion scores. Furthermore, OEO was found to have limited effects on tight junction-related gene expressions (Occludin and ZO-1). The broilers of the OEOL and OEOH groups significantly decreased the expression of TNF-α mRNA in the ileum and only the OEOH group was found to inhibit the IFN-γ expression of IFN- induced by Cp challenge. Finally, despite the fact that in vitro antibacterial effects by OEO were observed, considering its high minimum inhibitory concentration (MIC) value, we inferred that the protective effects by OEO against Cp challenge were not attributable to its direct antibacterial effects. We proposed OEO as a promising substitute for antibiotics against NE induced by Cp during poultry production.


Author(s):  
Nilay Seyidoglu ◽  
Sabire Peker

Probiotics and their components have been used to improve growth performance and immunity, as well as intestinal health. This study evaluated the effect of different doses of Saccharomyces cerevisiae on the morphological properties of duodenums of rabbits. Twenty 6-7 weeks old male New Zealand White Rabbits were randomly allocated into three groups for 90 days. The first group (control group) received the basal diet, the second group received basal diet supplemented with S.cerevisiae at a level of 2g/kg of feed, and the third group was fed with S.cerevisiae live yeast culture added at 4.0 g/kg. At the end of the experiment duodenum segments were taken, fixed in 10% neutral buffered formalin and processed for histological examination. In this study, the total thickness of the mucosa, the height of the villi and depth of the crypts and depth of the glands of the duodenum were found to be longer with the increased yeast doses. However, there was no significant difference among the villus crypt ratio of the groups. In conclusion, the total thickness of the mucosa, villus heights, crypt depths and gland depths were increased significantly in both of the yeast groups of rabbits. Therefore, it may be proposed that administration of S.cerevisiae in either low or high doses may be used for intestinal health.


2021 ◽  
Author(s):  
Chunnuan Zhang ◽  
Yuheng Wang ◽  
Hongtao Ren ◽  
Junhui Wang ◽  
Dongxue Jiang ◽  
...  

Abstract The objective of this study was to determine the effects of quercetin on oxidative stress and apoptosis induced by TPT in zebrafish. 240 fish were divided into 4 groups with three repeats. D1: fish fed with the basal diet as the control group. D2: fish fed with basal diet and exposed in 10 ng/L TPT. D3: fish fed diets containing 100 mg/Kg quercetin and exposed in 10ng/L TPT. D4: fish fed diets containing 100 mg/Kg quercetin. The results showed that quercetin could ameliorate oxidative stress, which decreased MDA, NO levels and improved antioxidant enzyme activities. The key apoptotic gene expressions, including caspase3, Bax and caspase9 mRNA expression were significantly induced by TPT exposure as compared with the control group, while notably decreased the Bcl-2 gene. However, dietary quercetin prevented a significant increase in Bax, caspase3 and caspase9 mRNA levels induced by TPT exposure, but increased Bcl-2 mRNA levels. The results of our study also demonstrated that 10 ng/L TPT significantly up-regulated TNF-α, IL-1β, IL-8, and NF-kB p65 gene expression and down-regulated IL-10 and IkB expression compared to the control group. However, TPT-induced inflammation was significantly mitigated in the quercetin treatment group. In conclusion, our findings suggested that quercetin might alleviate hepatic oxidative damage and apoptosis induced by TPT.


2022 ◽  
Vol 8 ◽  
Author(s):  
Kaibin Mo ◽  
Jing Li ◽  
Fenfen Liu ◽  
Ying Xu ◽  
Xianhui Huang ◽  
...  

Essential oils (EOs) have long been considered an alternative to antibiotics in the breeding industry. However, they are unstable and often present unpleasant odors, which hampers their application. Microencapsulation can protect the active gradients from oxidation and allow them to diffuse slowly in the gastrointestinal tract. The purpose of this study was to investigate the effect of microencapsulation technology on the biological function of EOs and the possibility of using microencapsulate EOs (MEEOs) as an alternative to antibiotics in weaning piglets. First, we prepared MEEOs and common EOs both containing 2% thymol, 5% carvacrol and 3% cinnamaldehyde (w/w/w). Then, a total of 48 weaning piglets were randomly allotted to six dietary treatments: (1) basal diet; (2) 75 mg/kg chlortetracycline; (3) 100 mg/kg common EOs; (4) 500 mg/kg common EOs; (5) 100 mg/kg MEEOs; and (6) 500 mg/kg MEEO. The trial lasted 28 days. The results showed that piglets in the 100 mg/kg MEEOs group had the lowest diarrhea index during days 15–28 (P &lt; 0.05). In addition, 100 mg/kg MEEOs significantly alleviated intestinal oxidative stress and inflammation (P &lt; 0.05), whereas 500 mg/kg common EOs caused intestinal oxidative stress (P &lt; 0.05) and may lead to intestinal damage through activation of inflammatory cytokine response. MEEOs (100 mg/kg) significantly reduced the ratio of the relative abundance of potential pathogenic and beneficial bacteria in the cecum and colon (P &lt; 0.05), thus contributing to the maintenance of intestinal health. On the other hand, chlortetracycline caused an increase in the ratio of the relative abundance of potential pathogenic and beneficial bacteria in the colon (P &lt; 0.05), which could potentially have adverse effects on the intestine. The addition of a high dose of MEEOs may have adverse effects on the intestine and may lead to diarrhea by increasing the level of colonic acetic acid (P &lt; 0.05). Collectively, the results suggest that microencapsulation technology significantly promotes the positive effect of EOs on the intestinal health of weaning piglets and reduces the adverse effect of EOs, and 100 mg/kg MEEOs are recommended as a health promoter in piglets during the weaning period.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yang Chen ◽  
Shuaishuai Hu ◽  
Jiali Li ◽  
Bohao Zhao ◽  
Naisu Yang ◽  
...  

Intestinal infections are a major cause of morbidity and mortality in humans and agricultural animals, especially newborns and weaned animals. Preventive treatments that help weaned animals maintain homeostasis and balance the hindgut microbial populations are desirable. The present study aimed to explore the impact of bacitracin methylene disalicylate (BMD) on the intestinal health by analyzing the intestinal environment, morphology, expression of peptidoglycan recognition proteins (PGRPs), and flora of weaned rabbits. A total of 300 New Zealand weaned rabbits were randomly divided into the following five treatment groups for a 35-day feed trial: control group (basal diet), bacitracin zinc (BZ) group (50 mg/kg BZ), BMDa group (100 mg/kg BMD), BMDb group (50 mg/kg BMD), and BMDc group (rabbits fed a basal diet supplemented with 25 mg/kg BMD). In each treatment group, 28 rabbits were slaughtered for experimental analysis. The results showed that the supplementation of BMD increased the environmental acidity of the cecum of the weaned rabbits and reduced the ammonia-nitrogen concentration, which was beneficial to the survival of useful bacteria in the intestine. The morphology analysis of the duodenum using hematoxylin and eosin staining revealed that the villus length, villus/crypt ratio, and intestinal wall thickness increased in the BMD group, thereby improving the structure of the duodenum and the absorption capacity of the small intestine. Moreover, real-time polymerase chain reaction test showed that PGRPs (especially PGLYRP-1 and PGLYRP-2) in the intestinal had an antagonistic effect with BMD in the process of inhibiting pathogenic bacteria, resulting in their decreased expression (P &lt; 0.05). Furthermore, through 16S rRNA sequencing in the cecal content, the abundance of the predominant phyla in the BMDa and BZ groups was found to be the closest. The abundance of the genera Lachnospira, Erysipelotrichaceae (p-75-a5), Paraprevotellaceae (YRC22), Mogibacterium, Peptococcaceae (rc4-4), Anaerovibrio, Succinivibrio, and Sphaerochaeta increased in the BMDa and BZ groups (P &lt; 0.05). The relative abundance of Alistipes, Sedimentibacter, and Dorea significantly increased only in the BMDa group (P &lt; 0.05). Conclusively, BMD, as well as microbes, improved the intestinal environment and structure to maintain the intestinal health of weaned rabbits.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 472-474
Author(s):  
Jing Wang ◽  
Bi E Tan ◽  
Jianjun Li ◽  
Ming Qi ◽  
Wenkai Ren ◽  
...  

Abstract Weaning-stress decreases the digestive and absorptive capacity of small intestine in piglets, resulting in reduction in energy intake for intestine cells and defects in epithelial structure. As glutamine (Gln), glutamate (Glu), and aspartate (Asp) are major energy sources for small intestine; thus, this study was conducted to test the hypotheses that supplementation with Gln, Glu, and Asp in diets will improve the intestinal morphology and tight junction in weaning piglets. 198 weaned piglets were assigned to the following treatments: i) Control (Basal diet + 1.59% L-Alanine); ii) T1 (Basal diet + 1% L-Glutamine + 0.5% L-Glutamate + 0.1% L-Aspartate); iii) T2 (Low energy diet + 1% L-Glutamine + 0.5% L-Glutamate + 0.1% L-Aspartate). The small intestinal samples were obtained on 5 or 21-day-post-weaning. The results showed that basal dietary supplementation with Gln, Glu, and Asp in basal diet improved the final body weight (BW), average daily gain (ADG) of piglets on 21-day of post-weaning. Supplementation with Gln, Glu, and Asp in diet with low energy decreased the villus height and crypt depth in ileum of piglets on 5-day-post-weaning, but increased villus height and goblet cell number in jejunum on 21-day post-weaning compared with those in control group. On 5-day-post-weaning, high mRNA levels of voltage-gated potassium (Kv) 1.1 in ileum and Kv 1.5 in jejunum were observed in T 1 and T 2 groups, respectively. Other indicators were higher than those in control piglets on day 5 or 21 post-weaning, including protein abundances of claudin-1, laudin-3 and occluding, and the percentage of proliferating cell nuclear antigen (PCNA)-positive cells in jejunum and ileum in T 1 or T 2 groups. Collectively, these findings indicated that Gln, Glu, and Asp can alleviate the intestinal barrier injury in piglets induced by weaning stress even under low energy diet.


Sign in / Sign up

Export Citation Format

Share Document