scholarly journals Behavior of Vibrio spp. in Table Olives

2021 ◽  
Vol 12 ◽  
Author(s):  
Guiomar Denisse Posada-Izquierdo ◽  
Antonio Valero ◽  
Francisco Noé Arroyo-López ◽  
Miriam González-Serrano ◽  
Alfonso M. Ramos-Benítez ◽  
...  

The presence of Vibrio species in table olive fermentations has been confirmed by molecular biology techniques in recent studies. However, there has been no report of any foodborne outbreak caused by Vibrio due to the consumption of table olives, and their role as well as the environmental conditions allowing their survival in table olives has not been elucidated so far. The aims of this work were to model the behavior of an inoculated Vibrio cocktail in diverse table olive environments and study the possible behavior of an inoculated Vibrio cocktail in table olives. First, an in vitro study has been performed where the microbial behavior of a Vibrio cocktail was evaluated in a laboratory medium and in olive brines using predictive models at different NaCl concentrations (2–12%) and pH levels (4.0–9.0). Afterward, a challenge testing was done in lye-treated olives inoculated at the beginning of fermentation with the Vibrio cocktail for 22 days. The Vibrio cocktail inoculated in table olives has not been detected in olive brines during fermentation at different pH levels. However, it was observed that this microorganism in a laboratory medium could reach an optimal growth at pH 9 and 2% salt, without time of constant absorbance (tA), and the maximum absorbance value (yend) observed was at pH 8 and 2% salt conditions. The statistical analysis demonstrated that the effect of salt concentration was higher than pH for the kinetic growth parameters (μmax, tA, and yend). On the other hand, it was confirmed that no growth of the Vibrio cocktail on any sample was noticed in lye-treated olive fermentations. Thus, it was concluded that the presence of olive compounds (unknown) did not allow the development of Vibrio strains, so it is a very safety product as it has a natural antimicrobial compound, but the possibility that a native Vibrio sp. is able to acquire the capacity to adapt to this compound should be considered in further studies.

Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 275
Author(s):  
Antonio López-López ◽  
José María Moreno-Baquero ◽  
Antonio Garrido-Fernández

For the first time, the bioaccessibility of the mineral nutrients in ripe table olives and their contributions to the recommended daily intake (RDI), according to digestion methods (Miller’s vs. Crews’ protocols), digestion type (standard vs. modified, standard plus a post-digest re-extraction), and mineralisation system (wet vs. ashing) were studied. Overall, when the standard application was used, Miller’s protocol resulted in higher bioaccessibilities of Na, K, Ca, Mg, and Fe than the Crews’ method. The modified protocols improved most of these values, but the Crews’ results only approximated the Miller’s levels in the case of Na and K. The bioaccessibility of P was hardly affected by the factors studied, except that the modified Miller’s protocol led to higher levels when ashing. No significant effect of the mineralisation system was found. The modified Miller’s protocol, regardless of the mineralisation system, led to the overall highest bioaccessibility values in ripe olives, which were: Na (96%), K (95%), Ca (20%), Mg (73%), Fe (45%), and P (60%). Their potential contributions to the RDI, based on these bioaccessibilities and 100 g olive flesh service size, were then 29, 0.5, 4, 3, 33, and 1% respectively. The investigation has led to the development of a method for assessing the bioaccessibility of the mineral nutrients not only in ripe but also in the remaining table olive presentations and opens a new research line of great interest for producing healthier products.


2021 ◽  
Author(s):  
Pritikrishna Majhi ◽  
Gyana Ranjan Rout ◽  
Saubhagya Manjari Samantaray

Abstract Sukinda chromium mine is well known for its chromium (Cr) reserve in India. It accounts for 97% of Cr production in the country. The open cast mining results in the seepage and accumulation of chromium in the nearby paddy fields through soil runoff. Deposition of high concentrations of toxic Cr6+ adversely affected the growth and productivity of rice plants. It was studied that Cr6+ toxicity can be counteracted by the microbes especially algae. Hence, an attempt has been made for the exploration of an indigenous micro-algal strain for the detoxification of Cr6+ in the rice fields. Three different micro-algal strains were isolated from the waterlogged regions of the mine waste area and tested against Cr6+. The average concentration of Cr6+ in the soils of rice fields and its surrounding regions was estimated around 40ppm. In vitro study was conducted to determine the optimal growth parameters for the growth of the algal strains. The concentration of total chromium availability was determined by using ICP-OES (Inductively coupled plasma atomic emission spectroscopy. It showed that all the algal-stains were able to detoxify Cr6+, but the best result (89.63%) was observed in one strain ‘SM3’. SEM-EDX study also showed that there was no Cr adsorbed on the surface of the algal strain. Raman Spectroscopy study confirmed the reduction of Cr6+ to Cr3+ in algal strain. The strain was identified as Fischerella sp. (Accession no. MK422171) through morphological and molecular characterization. This algal strain can be used for the bioremediation of chromium contaminated crop fields.


2017 ◽  
Vol 27 (2) ◽  
pp. 161-169 ◽  
Author(s):  
Lidiia Samarina ◽  
Valentina Malyarovskaya ◽  
Yulija Abilfazova ◽  
Natalia Platonova ◽  
Kristina Klemeshova ◽  
...  

Structural and physiological responses of chrysanthemum to repeated osmotic stress were studied. Plants were cultured for 2 weeks (for each stress1 and stress 2) on half MS supplemented with mannitol 100 mM (Treatment I) and 200 mM (Treatment II). First stress inhibited growth parameters stronger than second stress in treatment I. In treatment II both stress events strongly inhibited growth parameters of micro‐shoots. Proline content exceeded control 6 ‐ 8 times after 1st stress, and 2 ‐ 5 times after the 2nd stress in treatments I and II, respectively. Soluble protein was accumulated in leaves during both stress exposures, and 2 ‐ 2.5 times exceeded control after the 2nd stress. Relative water content in both treatments increased after the 2nd stress exposure. In treatment II chlorophyll а and carotenoids contents were 8.78 and 4.62 mg/g comparing to control (4.21 and 2.25 mg/g, respectively) after the 1st stress. But after the 2nd stress there was no difference with control.Plant Tissue Cult. & Biotech. 27(2): 161-169, 2017 (December)


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 46
Author(s):  
Cristina Mihaescu ◽  
Daniel Dunea ◽  
Adrian Gheorghe Bășa ◽  
Loredana Neagu Frasin

Phomopsis juglandina (Sacc.) Höhn., which is the conidial state of Diaporthe juglandina (Fuckel) Nitschke, and the main pathogen causing the dieback of branches and twigs of walnut was recently detected in many orchards from Romania. The symptomatological, morphological, ultrastructural, and cultural characteristics, as well as the pathogenicity of an isolate of this lignicolous fungus, were described and illustrated. The optimum periods for infection, under the conditions prevailing in Southern Romania, mainly occur in the spring (April) and autumn months (late September-beginning of October). Strong inverse correlations (p < 0.001) were found between potential evapotranspiration and lesion lengths on walnut branches in 2019. The pathogen forms two types of phialospores: alpha and beta; the role of beta phialospores is not well known in pathogenesis. In Vitro, the optimal growth temperature of mycelial hyphae was in the range of 22–26 °C, and the optimal pH is 4.4–7. This pathogen should be monitored continuously due to its potential for damaging infestations of intensive plantations.


Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 195
Author(s):  
Alla A. Shulgina ◽  
Elena A. Kalashnikova ◽  
Ivan G. Tarakanov ◽  
Rima N. Kirakosyan ◽  
Mikhail Yu. Cherednichenko ◽  
...  

We investigated the influence of different conditions (light composition and plant growth regulators (PGRs) in culture media) on the morphophysiological parameters of Stevia rebaudiana Bertoni in vitro and in vivo. Both PGRs and the light spectra applied were found to significantly affect plant morphogenesis. During the micropropagation stage of S. rebaudiana, optimal growth, with a multiplication coefficient of 15, was obtained in an MS culture medium containing 2,4-epibrassinolide (Epin) and indole-3-acetic acid (IAA) at concentrations of 0.1 and 0.5 mg L−1, respectively. During the rooting stage, we found that the addition of 0.5 mg L−1 hydroxycinnamic acid (Zircon) to the MS medium led to an optimal root formation frequency of 85% and resulted in the formation of strong plants with well-developed leaf blades. Cultivation on media containing 0.1 mg L−1 Epin and 0.5 mg L−1 IAA and receiving coherent light irradiation on a weekly basis resulted in a 100% increase in the multiplication coefficient, better adventitious shoot growth, and a 33% increase in the number of leaves. S. rebaudiana microshoots, cultured on MS media containing 1.0 mg L−1 6-benzylaminopurine (BAP) and 0.5 mg L−1 IAA with red monochrome light treatments, increased the multiplication coefficient by 30% compared with controls (white light, media without PGRs).


1997 ◽  
Vol 25 (3) ◽  
pp. 303-309
Author(s):  
Václav Mandys ◽  
Katerina Jirsová ◽  
Jirí Vrana

The neurotoxic effects of seven selected Multicenter Evaluation of In Vitro Cytotoxicity programme chemicals (methanol, ethanol, isopropanol, sodium chloride, potassium chloride, iron [II] sulphate and chloroform) were evaluated in organotypic cultures of chick embryonic dorsal root ganglia (DRG), maintained in a soft agar culture medium. Two growth parameters of neurite outgrowth from the ganglia — the mean radial length of neurites and the area of neurite outgrowth — were used to evaluate the toxicities of the chemicals. Dose-dependent decreases of both parameters were observed in all experiments. IC50 values (the concentration causing 50% inhibition of growth) were calculated from the dose-response curves established at three time-points during culture, i.e. 24, 48 and 72 hours. The lowest toxic effect was observed in cultures exposed to methanol (the IC50 ranging from 580mM to 1020mM). The highest toxic effect was observed in cultures exposed to iron (II) sulphate (the IC50 ranging from 1.2mM to 1.7mM). The results of other recent experiments suggest that organotypic cultures of DRG can be used during in vitro studies on target organ toxicity within the peripheral nervous system. Moreover, these cultures preserve the internal organisation of the tissue, maintain intercellular contacts, and thus reflect the in vitro situation, more precisely than other cell cultures.


Author(s):  
Maria-Dimitra Tsolakidou ◽  
Ioannis A Stringlis ◽  
Natalia Fanega-Sleziak ◽  
Stella Papageorgiou ◽  
Antria Tsalakou ◽  
...  

Abstract Composts represent a sustainable way to suppress diseases and improve plant growth. Identification of compost-derived microbial communities enriched in the rhizosphere of plants and characterization of their traits, could facilitate the design of microbial synthetic communities (SynComs) that upon soil inoculation could yield consistent beneficial effects towards plants. Here, we characterized a collection of compost-derived bacteria, previously isolated from tomato rhizosphere, for in vitro antifungal activity against soil-borne fungal pathogens and for their potential to change growth parameters in Arabidopsis. We further assessed root-competitive traits in the dominant rhizospheric genus Bacillus. Certain isolated rhizobacteria displayed antifungal activity against the tested pathogens and affected growth of Arabidopsis, and Bacilli members possessed several enzymatic activities. Subsequently, we designed two SynComs with different composition and tested their effect on Arabidopsis and tomato growth and health. SynCom1, consisting of different bacterial genera, displayed negative effect on Arabidopsis in vitro, but promoted tomato growth in pots. SynCom2, consisting of Bacilli, didn't affect Arabidopsis growth, enhanced tomato growth and suppressed Fusarium wilt symptoms. Overall, we found selection of compost-derived microbes with beneficial properties in the rhizosphere of tomato plants, and observed that application of SynComs on poor substrates can yield reproducible plant phenotypes.


2021 ◽  
Vol 11 (13) ◽  
pp. 5765
Author(s):  
Joo-Yun Kim ◽  
Eun-Jung Choi ◽  
Jae-Ho Lee ◽  
Myeong-Seok Yoo ◽  
Keon Heo ◽  
...  

Vitamin B2, also known as riboflavin, is essential for maintaining human health. The purpose of this study was to isolate novel lactic acid bacteria that overproduce vitamin B2 and to validate their potential as probiotics. In this study, Lactobacillus plantarum HY7715 (HY7715) was selected among lactic acid bacteria isolated from Kimchi. HY7715 showed a very high riboflavin-producing ability compared to the control strain due to the high expression of ribA, ribB, ribC, ribH, and ribG genes. HY7715 produced 34.5 ± 2.41 mg/L of riboflavin for 24 h without consuming riboflavin in the medium under optimal growth conditions. It was able to produce riboflavin in an in vitro model of the intestinal environment. In addition, when riboflavin deficiency was induced in mice through nutritional restriction, higher levels of riboflavin were detected in plasma and urine in the HY7715 administration group than in the control group. HY7715 showed high survival rate in simulated gastrointestinal conditions and had antibiotic resistance below the cutoff MIC value suggested by the European Food Safety Authority; moreover, it did not cause hemolysis. In conclusion, HY7715 could be considered a beneficial probiotic strain for human and animal applications, suggesting that it could be a new alternative to address riboflavin deficiency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Heema K. N. Vyas ◽  
Jason D. McArthur ◽  
Martina L. Sanderson-Smith

AbstractGroup A Streptococcus (GAS) causes 700 million infections and accounts for half a million deaths per year. Biofilm formation has been implicated in both pharyngeal and dermal GAS infections. In vitro, plate-based assays have shown that several GAS M-types form biofilms, and multiple GAS virulence factors have been linked to biofilm formation. Although the contributions of these plate-based studies have been valuable, most have failed to mimic the host environment, with many studies utilising abiotic surfaces. GAS is a human specific pathogen, and colonisation and subsequent biofilm formation is likely facilitated by distinct interactions with host tissue surfaces. As such, a host cell-GAS model has been optimised to support and grow GAS biofilms of a variety of GAS M-types. Improvements and adjustments to the crystal violet biofilm biomass assay have also been tailored to reproducibly detect delicate GAS biofilms. We propose 72 h as an optimal growth period for yielding detectable biofilm biomass. GAS biofilms formed are robust and durable, and can be reproducibly assessed via staining/washing intensive assays such as crystal violet with the aid of methanol fixation prior to staining. Lastly, SEM imaging of GAS biofilms formed by this model revealed GAS cocci chains arranged into three-dimensional aggregated structures with EPS matrix material. Taken together, we outline an efficacious GAS biofilm pharyngeal cell model that can support long-term GAS biofilm formation, with biofilms formed closely resembling those seen in vivo.


Sign in / Sign up

Export Citation Format

Share Document