scholarly journals The Key Role of Exosomes on the Pre-metastatic Niche Formation in Tumors

2021 ◽  
Vol 8 ◽  
Author(s):  
Xuyang Yang ◽  
Yang Zhang ◽  
Yaguang Zhang ◽  
Su Zhang ◽  
Lei Qiu ◽  
...  

Exosomes or other extracellular vesicles released from cells play an important role in cell-to-cell communication by transferring bio-information (DNA, coding/non-coding RNA, and proteins), which indicates parental cell status to recipient cells in the extracellular environment. Increasingly, evidence shows that tumor-derived exosomes mediate tumor pre-metastatic niche (PMN) remodeling to establish a supportive and receptive niche to promote tumor cell colonization and metastasis. Uptake of genetic information by target cells in the extracellular environment triggers epigenetic changes that contribute to PMN formation. Here, we provide a comprehensive overview of the current understanding of exosomes-mediated reprogramming of cells in PMN formation.

2020 ◽  
Vol 25 (42) ◽  
pp. 4510-4522 ◽  
Author(s):  
Biancamaria Longoni ◽  
Irene Fasciani ◽  
Shivakumar Kolachalam ◽  
Ilaria Pietrantoni ◽  
Francesco Marampon ◽  
...  

: Exosomes are extracellular vesicles produced by eukaryotic cells that are also found in most biological fluids and tissues. While they were initially thought to act as compartments for removal of cellular debris, they are now recognized as important tools for cell-to-cell communication and for the transfer of pathogens between the cells. They have attracted particular interest in neurodegenerative diseases for their potential role in transferring prion-like proteins between neurons, and in Parkinson’s disease (PD), they have been shown to spread oligomers of α-synuclein in the brain accelerating the progression of this pathology. A potential neuroprotective role of exosomes has also been equally proposed in PD as they could limit the toxicity of α-synuclein by clearing them out of the cells. Exosomes have also attracted considerable attention for use as drug vehicles. Being nonimmunogenic in nature, they provide an unprecedented opportunity to enhance the delivery of incorporated drugs to target cells. In this review, we discuss current knowledge about the potential neurotoxic and neuroprotective role of exosomes and their potential application as drug delivery systems in PD.


4open ◽  
2019 ◽  
Vol 2 ◽  
pp. 11 ◽  
Author(s):  
Björn L.D.M. Brücher ◽  
Ijaz S. Jamall

Fibroblasts are actively involved in the creation of the stroma and the extracellular matrix which are important for cell adhesion, cell–cell communication, and tissue metabolism. The role of fibrosis in carcinogenesis can be examined by analogy to tissues of various cancers. The orchestration of letters in the interplay of manifold components with signaling and crosstalk is incompletely understood but available evidence suggests a hitherto underappreciated role for fibrosis in carcinogenesis. Complex signaling and crosstalk by pathogenic stimuli evoke persistent subclinical inflammation, which in turn, results in a cascade of different cell types, ubiquitous proteins and their corresponding enzymes, cytokine releases, and multiple signaling pathways promoting the onset of fibrosis. There is considerable evidence that the body's attempt to resolve such a modified extracellular environment leads to further disruption of homeostasis and the genesis of the precancerous niche as part of the six-step process that describes carcinogenesis. The precancerous niche is formed and can be understood to develop as a result of (1) pathogenic stimulus, (2) chronic inflammation, and (3) fibrosis with alterations of the extracellular matrix, stromal rigidity, and mechano-transduction. This is why carcinogenesis is not just a process of aberrant cell growth with damaged genetic material but the role of the PCN in its entirety reveals how carcinogenesis can occur without invoking the need for somatic mutations.


2019 ◽  
Vol 20 (16) ◽  
pp. 3884 ◽  
Author(s):  
Qingqing Liu ◽  
Fu Peng ◽  
Jianping Chen

Breast cancer, ranking first among women’s cancers worldwide, develops from the breast tissue. Study of the breast tissue is, therefore of great significance to the diagnosis and treatment of breast cancer. Exosomes, acting as an effective communicator between cells, are in the ascendant in recent years. One of the most important cargoes contained in the exosomes is microRNAs, belonging to the non-coding RNA family. When the exosomal microRNAs are absorbed into the intracellular location, most of the microRNAs will act as tumor promoters or suppressors by inhibiting the translation process of the target mRNA, thus affecting the behavior of other stromal cells in the tumor microenvironment. At present, growing research focuses on the different types of donor cell sources, their contribution to cancer, miRNA profiling, their biomarker potential, etc. This review aims to state the function of diverse miRNAs in exosomes medicated cell–cell communication and the potency of some specific enriched miRNAs as molecular markers in clinical trials. We also describe the mechanism of anti-cancer compounds through exosomes and the exploration of artificially engineered techniques that lead miRNA-inhibitors into exosomes for therapeutic use.


2020 ◽  
Vol 21 (7) ◽  
pp. 2333
Author(s):  
Ana Lúcia Leitão ◽  
Marina C. Costa ◽  
André F. Gabriel ◽  
Francisco J. Enguita

Complex organisms are associations of different cells that coexist and collaborate creating a living consortium, the holobiont. The relationships between the holobiont members are essential for proper homeostasis of the organisms, and they are founded on the establishment of complex inter-connections between all the cells. Non-coding RNAs are regulatory molecules that can also act as communication signals between cells, being involved in either homeostasis or dysbiosis of the holobionts. Eukaryotic and prokaryotic cells can transmit signals via non-coding RNAs while using specific extracellular conveyors that travel to the target cell and can be translated into a regulatory response by dedicated molecular machinery. Within holobionts, non-coding RNA regulatory signaling is involved in symbiotic and pathogenic relationships among the cells. This review analyzes current knowledge regarding the role of non-coding RNAs in cell-to-cell communication, with a special focus on the signaling between cells in multi-organism consortia.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1248
Author(s):  
Qiaoyi Chen ◽  
Xiaoge Xie

MicroRNA is a class of non-coding RNA involved in post-transcriptional gene regulation. Aberrant expression of miRNAs is well-documented in molecular cancer biology. Extensive research has shown that miR-210 is implicated in the progression of multiple cancers including that of the lung, bladder, colon, and renal cell carcinoma. In recent years, exosomes have been evidenced to facilitate cell–cell communication and signaling through packaging and transporting active biomolecules such as miRNAs and thereby modify the cellular microenvironment favorable for lung cancers. MiRNAs encapsulated inside the lipid bilayer of exosomes are stabilized and transmitted to target cells to exert alterations in the epigenetic landscape. The currently available literature indicates that exosomal miR-210 is involved in the regulation of various lung cancer-related signaling molecules and pathways, including STAT3, TIMP-1, KRAS/BACH2/GATA-3/RIP3, and PI3K/AKT. Here, we highlight major findings and progress on the roles of exosomal miR-210 in lung cancer.


2020 ◽  
Vol 28 ◽  
Author(s):  
Lei Chen ◽  
Ying-Jian Gu ◽  
Ming-Yuan Zhou ◽  
Lin Cheng ◽  
Yun Wang

Background: Pulmonary arterial hypertension is one of the chronic diseases that affect the human health. Microvesicles participate in the communication between cells by fusing with the recipient cells to transfer the bioactive molecules, such as lipids, proteins, RNA, etc., to the target cells. Microvesicles are involved in various biological processes, and have the functions of regulating immunity, promoting angiogenesis and so on. Microvesicles derived from various cells may become diagnostic biomarkers or therapeutic targets to the diseases. Therefore, exploring the role of microvesicles-mediated cell communication has become a potential therapeutic target to pulmonary arterial hypertension. Objective: It is to clarify the classification, features and mechanism of microvesicles in cell communication, and to discuss the potential important roles of microvesicles-mediated cell communication in pulmonary arterial hypertension. Results: Inflammation is an important the pathogenesis of pulmonary arterial hypertension. Many studies have shown that microvesicles from different cells can participate in the pathological process of PAH by transferring the inflammatory factors contained in them. Conclusion: Microvesicles-mediated cell communication may become the therapeutic target to pulmonary arterial hypertension.


2019 ◽  
Vol 20 (11) ◽  
pp. 2840 ◽  
Author(s):  
Marta Zarà ◽  
Gianni Francesco Guidetti ◽  
Marina Camera ◽  
Ilaria Canobbio ◽  
Patrizia Amadio ◽  
...  

Extracellular vesicles (EVs) are well-established mediators of cell-to-cell communication. EVs can be released by every cell type and they can be classified into three major groups according to their biogenesis, dimension, density, and predominant protein markers: exosomes, microvesicles, and apoptotic bodies. During their formation, EVs associate with specific cargo from their parental cell that can include RNAs, free fatty acids, surface receptors, and proteins. The biological function of EVs is to maintain cellular and tissue homeostasis by transferring critical biological cargos to distal or neighboring recipient cells. On the other hand, their role in intercellular communication may also contribute to the pathogenesis of several diseases, including thrombosis. More recently, their physiological and biochemical properties have suggested their use as a therapeutic tool in tissue regeneration as well as a novel option for drug delivery. In this review, we will summarize the impact of EVs released from blood and vascular cells in arterial and venous thrombosis, describing the mechanisms by which EVs affect thrombosis and their potential clinical applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ilaria Laurenzana ◽  
Daniela Lamorte ◽  
Stefania Trino ◽  
Luciana De Luca ◽  
Concetta Ambrosino ◽  
...  

The bone marrow (BM) microenvironment in hematological malignancies (HMs) comprises heterogeneous populations of neoplastic and nonneoplastic cells. Cancer stem cells (CSCs), neoplastic cells, hematopoietic stem cells (HSCs), and mesenchymal stromal/stem cells (MSCs) are all components of this microenvironment. CSCs are the HM initiators and are associated with neoplastic growth and drug resistance, while HSCs are able to reconstitute the entire hematopoietic system; finally, MSCs actively support hematopoiesis. In some HMs, CSCs and neoplastic cells compromise the normal development of HSCs and perturb BM-MSCs. In response, “reprogrammed” MSCs generate a favorable environment to support neoplastic cells. Extracellular vesicles (EVs) are an important cell-to-cell communication type in physiological and pathological conditions. In particular, in HMs, EV secretion participates to unidirectional and bidirectional interactions between neoplastic cells and BM cells. The transfer of EV molecular cargo triggers different responses in target cells; in particular, malignant EVs modify the BM environment in favor of neoplastic cells at the expense of normal HSCs, by interfering with antineoplastic immunity and participating in resistance to treatment. Here, we review the role of EVs in BM cell communication in physiological conditions and in HMs, focusing on the effects of BM niche EVs on HSCs and MSCs.


2021 ◽  
Vol 22 (7) ◽  
pp. 3374
Author(s):  
Simone Lipinski ◽  
Katharina Tiemann

Extracellular vesicles (EVs) serve as trafficking vehicles and intercellular communication tools. Their cargo molecules directly reflect characteristics of their parental cell. This includes information on cell identity and specific cellular conditions, ranging from normal to pathological states. In cancer, the content of EVs derived from tumor cells is altered and can induce oncogenic reprogramming of target cells. As a result, tumor-derived EVs compromise antitumor immunity and promote cancer progression and spreading. However, this pro-oncogenic phenotype is constantly being challenged by EVs derived from the local tumor microenvironment and from remote sources. Here, we summarize the role of EVs in the tumor–immune cross-talk that includes, but is not limited to, immune cells in the tumor microenvironment. We discuss the potential of remotely released EVs from the microbiome and during physical activity to shape the tumor–immune cross-talk, directly or indirectly, and confer antitumor activity. We further discuss the role of proinflammatory EVs in the temporal development of the tumor–immune interactions and their potential use for cancer diagnostics.


2020 ◽  
Vol 13 (8) ◽  
pp. 180 ◽  
Author(s):  
Domenico Maisano ◽  
Selena Mimmi ◽  
Rossella Russo ◽  
Antonella Fioravanti ◽  
Giuseppe Fiume ◽  
...  

Cells can communicate through special “messages in the bottle”, which are recorded in the bloodstream inside vesicles, namely exosomes. The exosomes are nanovesicles of 30–100 nm in diameter that carry functionally active biological material, such as proteins, messanger RNA (mRNAs), and micro RNA (miRNAs). Therefore, they are able to transfer specific signals from a parental cell of origin to the surrounding cells in the microenvironment and to distant organs through the circulatory and lymphatic stream. More and more interest is rising for the pathological role of exosomes produced by cancer cells and for their potential use in tumor monitoring and patient follow up. In particular, the exosomes could be an appropriate index of proliferation and cancer cell communication for monitoring the minimal residual disease, which cannot be easily detectable by common diagnostic and monitoring techniques. The lack of unequivocal markers for tumor-derived exosomes calls for new strategies for exosomes profile characterization aimed at the adoption of exosomes as an official tumor biomarker for tumor progression monitoring.


Sign in / Sign up

Export Citation Format

Share Document