scholarly journals Aged Microglia in Neurodegenerative Diseases: Microglia Lifespan and Culture Methods

2022 ◽  
Vol 13 ◽  
Author(s):  
Hyun-Jung Yoo ◽  
Min-Soo Kwon

Microglia have been recognized as macrophages of the central nervous system (CNS) that are regarded as a culprit of neuroinflammation in neurodegenerative diseases. Thus, microglia have been considered as a cell that should be suppressed for maintaining a homeostatic CNS environment. However, microglia ontogeny, fate, heterogeneity, and their function in health and disease have been defined better with advances in single-cell and imaging technologies, and how to maintain homeostatic microglial function has become an emerging issue for targeting neurodegenerative diseases. Microglia are long-lived cells of yolk sac origin and have limited repopulating capacity. So, microglial perturbation in their lifespan is associated with not only neurodevelopmental disorders but also neurodegenerative diseases with aging. Considering that microglia are long-lived cells and may lose their functional capacity as they age, we can expect that aged microglia contribute to various neurodegenerative diseases. Thus, understanding microglial development and aging may represent an opportunity for clarifying CNS disease mechanisms and developing novel therapies.

2021 ◽  
Vol 12 ◽  
Author(s):  
Fabien Pifferi ◽  
Benoit Laurent ◽  
Mélanie Plourde

Many prospective studies have shown that a diet enriched in omega-3 polyunsaturated fatty acids (n-3 PUFAs) can improve cognitive function during normal aging and prevent the development of neurocognitive diseases. However, researchers have not elucidated how n-3 PUFAs are transferred from the blood to the brain or how they relate to cognitive scores. Transport into and out of the central nervous system depends on two main sets of barriers: the blood-brain barrier (BBB) between peripheral blood and brain tissue and the blood-cerebrospinal fluid (CSF) barrier (BCSFB) between the blood and the CSF. In this review, the current knowledge of how lipids cross these barriers to reach the CNS is presented and discussed. Implications of these processes in health and disease, particularly during aging and neurodegenerative diseases, are also addressed. An assessment provided here is that the current knowledge of how lipids cross these barriers in humans is limited, which hence potentially restrains our capacity to intervene in and prevent neurodegenerative diseases.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Ulfuara Shefa ◽  
Min-Sik Kim ◽  
Na Young Jeong ◽  
Junyang Jung

Hydrogen sulfide (H2S), a toxic gaseous molecule, plays a physiological role in regulating homeostasis and cell signaling. H2S is produced from cysteine by enzymes, such as cystathionineβ-synthase (CBS), cystathionineγ-lyase (CSE), cysteine aminotransferase (CAT), and 3-mercaptopyruvate sulfurtransferase (3MST). These enzymes regulate the overall production of H2S in the body. H2S has a cell-signaling function in the CNS and plays important roles in combating oxidative species such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the body. H2S is crucial for maintaining balanced amounts of antioxidants to protect the body from oxidative stress, and appropriate amounts of H2S are required to protect the CNS in particular. The body regulates CBS, 3MST, and CSE levels in the CNS, and higher or lower levels of these enzymes cause various neurodegenerative diseases. This review discusses how H2S protects the CNS by acting as an antioxidant that reduces excessive amounts of ROS and RNS. Additionally, H2S regulates cell signaling to combat neuroinflammation and protect against central neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS).


2020 ◽  
Vol 21 (18) ◽  
pp. 6777
Author(s):  
Mayur Choudhary ◽  
Goldis Malek

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which senses environmental, dietary or metabolic signals to mount a transcriptional response, vital in health and disease. As environmental stimuli and metabolic products have been shown to impact the central nervous system (CNS), a burgeoning area of research has been on the role of the AHR in ocular and non-ocular neurodegenerative diseases. Herein, we summarize our current knowledge, of AHR-controlled cellular processes and their impact on regulating pathobiology of select ocular and neurodegenerative diseases. We catalogue animal models generated to study the role of the AHR in tissue homeostasis and disease pathogenesis. Finally, we discuss the potential of targeting the AHR pathway as a therapeutic strategy, in the context of the maladies of the eye and brain.


Author(s):  
Hannah R. Brown ◽  
Tammy L. Donato ◽  
Halldor Thormar

Measles virus specific immunoglobulin G (IgG) has been found in the brains of patients with subacute sclerosing panencephalitis (SSPE), a slowly progressing disease of the central nervous system (CNS) in children. IgG/albumin ratios indicate that the antibodies are synthesized within the CNS. Using the ferret as an animal model to study the disease, we have been attempting to localize the Ig's in the brains of animals inoculated with a cell associated strain of SSPE. In an earlier report, preliminary results using Protein A conjugated to horseradish peroxidase (PrAPx) (Dynatech Diagnostics Inc., South Windham, ME.) to detect antibodies revealed the presence of immunoglobulin mainly in antibody-producing plasma cells in inflammatory lesions and not in infected brain cells.In the present experiment we studied the brain of an SSPE ferret with neutralizing antibody titers of 1:1024 in serum and 1:512 in CSF at time of sacrifice 7 months after i.c. inoculation with SSPE measles virus-infected cells. The animal was perfused with saline and portions of the brain and spinal cord were immersed in periodate-lysine-paraformaldehyde (P-L-P) fixative. The ferret was not perfused with fixative because parts of the brain were used for virus isolation.


2020 ◽  
Vol 27 (34) ◽  
pp. 5790-5828 ◽  
Author(s):  
Ze Wang ◽  
Chunyang He ◽  
Jing-Shan Shi

Neurodegenerative diseases are a heterogeneous group of disorders characterized by the progressive degeneration of the structure and function of the central nervous system or peripheral nervous system. Alzheimer's Disease (AD), Parkinson's Disease (PD) and Spinal Cord Injury (SCI) are the common neurodegenerative diseases, which typically occur in people over the age of 60. With the rapid development of an aged society, over 60 million people worldwide are suffering from these uncurable diseases. Therefore, the search for new drugs and therapeutic methods has become an increasingly important research topic. Natural products especially those from the Traditional Chinese Medicines (TCMs), are the most important sources of drugs, and have received extensive interest among pharmacist. In this review, in order to facilitate further chemical modification of those useful natural products by pharmacists, we will bring together recent studies in single natural compound from TCMs with neuroprotective effect.


Impact ◽  
2019 ◽  
Vol 2019 (8) ◽  
pp. 24-26
Author(s):  
Jun-ichi Satoh

Brain pathology expert Dr Jun-ichi Satoh, from the Department of Bioinformatics and Molecular Neuropathology of Meiji Pharmaceutical University in Tokyo, is drawing on his expertise on neurology and neuroimmunology to delve into some of the more complex diseases impacting the human brain. His knowledge and expertise have allowed him to direct his research interests to study neurodegenerative diseases, such as Alzheimer's disease (AD), and neuroinflammatory diseases, such as multiple sclerosis (MS), and the analysis of their molecular pathogenesis by using a bioinformatics approach. His current focus is on Nasu-Hakola disease (NHD), a disease whose rarity has posed significant barriers towards performing large-scale clinical research in order to understand what exactly causes this disease and develop effective novel therapies.


2001 ◽  
Vol 66 (9) ◽  
pp. 1315-1340 ◽  
Author(s):  
Vladimir J. Balcar ◽  
Akiko Takamoto ◽  
Yukio Yoneda

The review highlights the landmark studies leading from the discovery and initial characterization of the Na+-dependent "high affinity" uptake in the mammalian brain to the cloning of individual transporters and the subsequent expansion of the field into the realm of molecular biology. When the data and hypotheses from 1970's are confronted with the recent developments in the field, we can conclude that the suggestions made nearly thirty years ago were essentially correct: the uptake, mediated by an active transport into neurons and glial cells, serves to control the extracellular concentrations of L-glutamate and prevents the neurotoxicity. The modern techniques of molecular biology may have provided additional data on the nature and location of the transporters but the classical neurochemical approach, using structural analogues of glutamate designed as specific inhibitors or substrates for glutamate transport, has been crucial for the investigations of particular roles that glutamate transport might play in health and disease. Analysis of recent structure/activity data presented in this review has yielded a novel insight into the pharmacological characteristics of L-glutamate transport, suggesting existence of additional heterogeneity in the system, beyond that so far discovered by molecular genetics. More compounds that specifically interact with individual glutamate transporters are urgently needed for more detailed investigations of neurochemical characteristics of glutamatergic transport and its integration into the glutamatergic synapses in the central nervous system. A review with 162 references.


Author(s):  
Vitalii Kryvenko ◽  
Olga Vagin ◽  
Laura A. Dada ◽  
Jacob I. Sznajder ◽  
István Vadász

Abstract The Na,K-ATPase establishes the electrochemical gradient of cells by driving an active exchange of Na+ and K+ ions while consuming ATP. The minimal functional transporter consists of a catalytic α-subunit and a β-subunit with chaperon activity. The Na,K-ATPase also functions as a cell adhesion molecule and participates in various intracellular signaling pathways. The maturation and trafficking of the Na,K-ATPase include co- and post-translational processing of the enzyme in the endoplasmic reticulum (ER) and the Golgi apparatus and subsequent delivery to the plasma membrane (PM). The ER folding of the enzyme is considered as the rate-limiting step in the membrane delivery of the protein. It has been demonstrated that only assembled Na,K-ATPase α:β-complexes may exit the organelle, whereas unassembled, misfolded or unfolded subunits are retained in the ER and are subsequently degraded. Loss of function of the Na,K-ATPase has been associated with lung, heart, kidney and neurological disorders. Recently, it has been shown that ER dysfunction, in particular, alterations in the homeostasis of the organelle, as well as impaired ER-resident chaperone activity may impede folding of Na,K-ATPase subunits, thus decreasing the abundance and function of the enzyme at the PM. Here, we summarize our current understanding on maturation and subsequent processing of the Na,K-ATPase in the ER under physiological and pathophysiological conditions. Graphic Abstract


2021 ◽  
pp. 107385842110249
Author(s):  
Dallin Dressman ◽  
Wassim Elyaman

T cells play a central role in homeostasis and host defense against infectious diseases. T cell dysregulation can lead to recognizing self-antigens as foreign antigens, causing a detrimental autoimmune response. T cell involvement in multiple sclerosis (MS), long understood to be an autoimmune-mediated neurodegenerative disease, is well characterized. More recently, a role for T cells has also been identified for the neurodegenerative diseases Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Interestingly, several alleles and variants of human leukocyte antigen (HLA) genes have been classified as AD and PD risk genes. HLA codes for components of major histocompatibility complex (MHC) class I or class II, both of which are expressed by microglia, the innate immune cells of the central nervous system (CNS). Thus, both microglia and T cells may potentially interact in an antigen-dependent or independent fashion to shape the inflammatory cascade occurring in neurodegenerative diseases. Dissecting the antigen specificity of T cells may lead to new options for disease-modifying treatments in neurodegenerative diseases. Here, we review the current understanding of T cells in neurodegenerative diseases. We summarize the subsets of T cells, their phenotype and potential functions in animal models and in human studies of neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document